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PREFACE

The.Mathematics-Methods Program (MM9 has been developed by the

Indiana University Mathematics Education Development Center (wpc)

during the years 1971-75. The development of the Mr was funded by.

the UPSTEP program of the National Science Foundation, with Vle goal

of producing an innovative program for the mathematics training of

prospective elementary school teachers (PSTs).

The primary features of the MMP are:

11111 It combines the mathematics training and the methods thining of

PSTs.

It promotes a hanOs-on,.laboratory approach to teaching in which

PST§ learn mathematics and methods by doing rather than by lis-

tening, taking notes or memorizing.

It involves the PST in using techniques and materials that are

.appropriate.for use with children.

It focuses on the real-world mathemi.tical concerns of children

and the real-world mathematical and pedagogical' concerns of

PSTs.

The MMP, as developed at the MEDC, involve§ a university class-
.

room component and a related public school teaching component. The

university classroom component combfnes the mathematics content

courses and methods courses normally taken by PSTs, while the Public

school teaching component provides the PST with a chancerto gain ex-

perience with children and insight into their mathematical thinking.

6



.A mdde1 has beeledeveloped for the implementation of the public

ischool teaching component of the MMP. Materials havelltrin developed

for the university classroom portion of the MMP. These include 12

instructional units with the following titles:

Numeration

0
Addition anif Subtraction

Multiplication and bivision

Rational Numbers with Integers and Reals

Awareness Geometry

Transformational Geometry

Analysis of Shapes

Measurement

Number Theory

Probability and Statistics

Graphs: the Picturing of Information

Experiences in Problem Solving

These units are written in an activity format that involves' the PST

in doing mathematics with an eye toward the application of that math-

ematics in the elementary school. The units are almost entirely "in-
.,

depeodent of one another, and any selection of them can be done, in.\

any Order. It is worth noting that the first four units listed per-

tain to the basic number work in the elementary school; the second '

four to the geometry of the elementary school;.and the final four to

mathematical topiCs for the elementary teacher.

For purposes of formative evaluation and dissemination, the MMP

has been field-tested at over 40 colleges and universities. The

field implementation formats have varied widely. They include the

following:

Use in mathematics department as the mathematics content pro-
.,

gram, or asa portion of that programe7

Use in the education schooY as the methods program, or as a por-
.

tion of that program,

Combined mathematics content and methods program taught in

vi



4

tither the mathematicS department, or the education school, or

Aointly;

Any of the dbove, with or without the public school teaching ex-

pe'riencOP.

Common to most of the field implementations was a small-group

forrlitt for the university classroom experience and an emphasis on the

use of concrete materials. The various centers that hAve implemented

all or part of the MMP have made A number of suggestions for change,

mAny of which are reflected in the final form of the program,- It is

fair to say that there has been a Oneral feeling of atisfaction

with, ahd enthusiasm for, MMP'from those.who have been involved in

field-testing.

A list of the field-test centers of'the MMP is as follows:

ALVIN JUNIOR COLLEGE
Alvin, Texas

BLUE MOUNTAIN COMMUNITY COLLEGE
Pendleton, Oregon

'BOISE STATE UNIVERSITY
Boise, Idaha

BRIDGEWATER COLLEGE _
Bridgewater, Virginia

CALIFORNIA STATE UNIVERS4TY,
CHICO

CALIFORNIA STATE UNIVERSITY,
NORTHRIDGE

CLARKE COLLEGE
Aibuque, Iowa

UNIVERSITY OF COLORADO
Boulder, Colorado

UNIVERSITY OF COLORADO AT
DENVER

CONCORDLA TEACHERS COLLEGE

River Forest, Illinois

GRAMBLING STATE UNIVERSITY
Grambling, Louisiana

.ILLINOIS STATE UNIVERSITY
Normal, Illinois

INDIANA STATE UNIVERSITY
EVANSVILLE

INDIANA STATE UNIVERSITY
Terre Haute, Indiana

INDIANA UNIVCRSITY
Bloomington, fndiana

INDIANA-UNIVERSITY NORTHWEST
Gary, .Indiana

MACALESTER COLLEGE
St. Paul, Minnesota

UNIVERSITY OF MAINE.AT FARMINGTON

UNIVERSITY.OF MAINE AT PORTLAND-
GORHAM

THE UNIVERSITY OF MANITOBA
Winnipeg, Manitoba, CANADA
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MICHIGAN STATE UNIVERSITY,
East Lansing, Michigan '

UNIVERSITY OF NORTHERN IOWA
Cedar Falls, Iowa

NORTHERN MICHIGAN UNIVERSITY
Marquette, Michigan

NORTHWEST MISSOURI STATE
UNIVERSITY

Maryville, Missouri

NORTHWESTERN UNIVERSITY
Evanston, Illinois

OAKLAND CITY COLLEGE
Oakland City, Indiana

UNIVERSITY OF OREGON
Eugene, Oregon

RHODE ISLAND COLLEGE
Providence, Rhode Island

SAINT XAVIER COLLEGE
Chicago, Illinois

SAN DIEGO STATE UNIVERSITY
San Diego, California

SAN FRANCISCO STATE. UNIVERSITY
San Francisco, California

SHELBY.STATE COMMUNITY COLLEGE
Memphis, Tennessee

UNIVERSITY OF SOUTHERN MISTIPPI
Hattiesburg, Mississippi P

SYRACUSE UNIVERSITY
Syracuse, New York

TEXAS SOUTHERN UNIVERSITY
Houston, Texas

WALTERS STATE COMMUNITY COLLEGE
Morristown, Tennessee

WARTBURG COLLEGE
Waverly, Iowa,

WESTERN MICHIGAN UNIVERSITY
Kalamazoo, Michigan

WHITTIER COLLEGE
Whittier, CaWornia

UNIVERSITY OF WISCONSIN--RIVER
FALLS

UNIVERSITY OF WISCONSIN/STEVENS
POINT

THE UNIVERSITY OF WYOMING
Laramie,)Wyoming
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INTRODUCTION TO
THE NUMBER THEOR`/ UNIT

.

Questions involving the counting numbers 1, 2, 3, .', are,as old as

mathematics itself. Some natural questions, When viewed in the right
i

light, are easily answered. Others., which appear equally natural and

answerable, have required the efforts of some of the wrldes best

mathematicians to resolve. Indeed, sonie have defied all attempts at

'solution and are of current research interest. Number theory, per-

haps more than any other branch of )
n

mathematics, has profited from the

III/0
efforts of amateurs in this con- ,

text we use the term amateur to

'refer to a nonprofessional; it

carries, no connotation of incapa-

bility, In fact, some of the

most interesting and profound

questions in the subject Kaye been

raised and studied by amateurs. ,

The many contributions by S'mateurs

have been encouraged by the'fact

that the problems are frequently qUite near the surface; i.e., they,

occur in the normal course of a thoughtful stu4y of the counting/num-

bers,,And they can be.attacked by methods that do not depend on:the

development of an elaborate mathematical theory. The faCt that num-.

ber theory abounds with such questions is oneNcogentreason.for'in-

cluding sdme number-theory work in the elementary school.



)

. Ln addition to being a source of questions that can provide chitl-

. dren. with problem-.solvinOxperiences, nuMberilleb-ry ha direct

relationship to the arithMetic curriculum. Teachers find that number
/

theory activities can help to strengthen skills with basicjaCts it/

an interesting, nonroutine setting:' Number-theory ideas are involved

in computingcommon denominators- for fractions. .Besidds, Children,

just seem to enjoy looking for the patterns,ihat Can be fouhd in the

counting numbers.

The unit begins-with an ovepiew that focuses on the historical

'development o£ number theory and the'place ofnUmber theory in the

elementary School curricblum. Ther?is a short list of ,deffnitions

Immediately following this Introduction so that the teeminoiogy and

notation used in the overview and throughout the unit will be clear.

Section I includes the basic Concepts of divisibility, primes,.

and factorization. Most of this material appears' explicitly In ele-

mentary school programs.

Section 11 s concerned with problem solving. ElementarY number

theory is an extraordinarily fruitful source of easily understood but

challenging problems, and this, section presents an brganizatiohal

scheme for'attacking such problems: Several problems of varying de-

grees of difficulty are collected at the end of the section. Ybu are

invited to test your skilf on them. Another probleMlike the ones of

'Section II is posed and solved in detail in the Appendix.

Section III illustrates how some.of the ideas introduced earlier

in the unit can be extended and applied in other situations.

Throughout the unit there are rrojects that are more substantial

than exercises and pursue ideas not followed up in the activities.

These 'projects, which may serve ists the basis fbr reports tdi the cfass,
,

rouhd out this preSentation of elementary number theory.

'The unit closes with a selected bibliography for those who wish

:to delve further into some a p cf of number theory. The references

) eited include some on history, content, and pedagogy.
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DEFINITIONS OF,TERMS USED IN NUMBER THEORY._

Tkiterms defined on this_page ore used:throughout the unit. Many of

them are familiar,t0oy, but they are included so that you will be

ceritain of their meanings. It is important that-we have a precise

vocabulary, in which the-termS have tbe same meanings for all of us.:

In the definitions that follow, the bols a, b, c, denote ,
,

counting numbers; i.e.i.numbers sel ted from, the set 11, 2, 3, 1.

I. a is a multiple -of b if there is.a ,c suc that a = bc. In.

this case; b -and c are factors of a.

Thus, 20 is a multiple of 5, and 4 and 5 are.factors qf 20.

2.- The set of factors- of a, or the factor set of a, is the set.,

of all factors of' a.

The set of factors of 60 is

11, 2, 3, 4, 5, 6; 10, 12, 15, 20, 30, 601.

3.. The set of multiples of a is the set of all multiples of a.

'For example, the set of multiples of 3 is

{3, 6, 9, 12, 15, ...1.

Note that the set of multiples of 3 is an infinite set.
11

4. a is prime if the factor set of,> a contains exactly,twb ele-

ments.

'The first eight prime numbers are 2, 3, 5, 7, 11, 13, 17, 19.

The factor set of 5,,foff example, is (1, 51.

5. a is composite if the factor set of a contains more than two

elements.

The first ten composite numbers are 4, 6, 8, 9, 10, 12, 14, 15,

16, 18. The factor set of 9, for example, is 11, 3, 91.

Note: The factor set of 1 is f111. So 1 is neither prime nor

composite. All other counting numbers are either prime or com-

'posite.

3
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a. divIdes b or a is a divisor of b if a is a factor of

b.

If a divides b, we write alb. For example,

5 divides 20 since. 20 = 5.4.

7. a and b are relatively prime if ther is no c, c 1, ;such

that cia and cib; i.e.; ,a' an0 b do niA share a.factor

besi-des I.

The numbers 15 and 22 are relatfvely prime, eveft thopgh neither

one happens to be prime:

...

1 5
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OVERVIEW

FOCUS:
t

You will be asked.to read or view anedVerview of the contents Orthis

unit. 1.6e first part of the overview will present a few highlights

of the history of number theory. .The'reMaining.part will focus on0
\

the miles of number theory iVthe elementary mathematics curriculum.

TWO roles are-illustrated: 0 application of number=theory i0eas to

the basic processes of arithitic^and the use Of number theory as a
medium for problem-solving experiences.

MATERIALS:

(Optional) ThelMathematics-Methods Program slide-.tape presentation

entitled, "Oyerwlew of Number Theory.1;.'

DIRECTIONS:

Read the essay entitled "Overview of Number Theory" which starts on

page 7 or yiew the slide-tape overview of the same title, and then

engage in a brief classroom discussion of some of the points raised

in it. The questions which follow can serve as &basis for.discus-

sion. These question's snbuld be read before reading"or yiewing the

overview.

1. Why is the str.and "number theory" included in the elementary

.mathematics curriculum?

2. Spme educators have suggested that the pumber-theary'strand is'

ideally suited to a more child-oriented and less teacher-oriented

instructional mode. Discuss this statement and provide arguments

,to'support your position: I.
3. How do you know that*Fermat's conjecture holds 'for n = 2?

5
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4. Congtruct another magic square usi,ng the numbers 1 Oftugh 9.

A list of definitions and notations is given on pages 3/ 4. You_may

wish to look over this list before reading or viewing the overview.

The terms defined there will be used throughout the unit.

17
6



AN OVERVIEW OF NUMBER THEORY

Number theory, as a branch of mathematics, has an especially rich

history and, as a source of interesting and sometimes surprising prob-

lems, it is unsurpassed. There are topics from number theory that

occur explicitly in the elementary school curriculUm, e.g., odd and

even numbers, prime ald compoOte numbers, factor trees, and least

common multiple. Some of these ideas--for instance, odd and even -

numbers, and the connection between the concept of prime numbers and

the representation of sets of objects in arrays--can be presented at

the primary level. Other ideas--for instance, factor trees and least

common multipleoccur more naturally, in the upper elementary grades.

At all levels, one can pose interesting challenge-type problems with

number-theoretic content. This untt contains a very brief introduc-

tion to some of the most basic ideas of number theory, a glimpse into

the history o'f the subject and a few of its many famous problems, and

a sample of the ways in which these ideas occur in the elementary

curriculum. Throughout the unit you are urged to "participate" in

the mathematics. Read with a pencil in hand, check the computations,

and create your own examples. Some of the greatest number theorists

of 'history have been amateurs.

Soon after early humans

learned to count and to perform

the arithmetic operations, they

began to speculate on the prop-

erties of the counting numbers.

Among the earliest indications

of interest in matters that

have number-theory content are

the myths and superstitions of

numerology. Many cultures had

numbers to which they attached

special significance. Examples

7
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are theiencient 'Hindus and 10,

OleTestaMent Jews and 7, and

certaia American Indians and 4..

Since the Greeks expressed num- is
bers by means of letters in their

alphabet, each.word and, in par-
ci

ticular, each name was associated
1\10

'with a' number. This association

fostered interest in the mysti- )6)

cism of numbers. Relics,of

ancient numerology remain in our

society. For instonce, very few

hotels or apartmentlwildings

haye a.floor numbered 13.

One of the earliest problems that woUld today be cl-assified as

belonging to number theory is the problem of determining "Pythagorean

triples." This designation, incidentally, iS OA entirely appropriate

since the problem had been studied by the Babylonians several centu-

ries before Pythagoras. The problem is that of finding number triples

such' as 3, 4, 5 for which 32 + 42 = 52. The Babylonians had discov-

ered some Pythagorean triples consisting of relatively large numbers,

for example, 12,709, 13,500, 18,541, and evidently knew something of

a general method for constructing them.

The prime numbers, that is numbers such as 2. 3, 5, 7, ....

which have no divisors other ihan 1 and themselves, were the subject

of systematic study by the Greeks. Three of the thirteen books of

Euclid's Elements (VII through IX) were devoted to number theOry, and

here we find Euclid's algoriihm for determining the greatest common

factor of a pair of counting numbers (see Activity 13) and a proof of

the fact that there are infinitely ManY p'rime numbers (see Part B of

Activity 5). About 100 years after Euclid', Eratosthenes developed a

"sieving" procedure for identifying those counting numbers that are

prime (see Part A of Activity 5). As a reSult of their interest in

numerology, the Greeks investigated the properties of sPecial types

so



of numbers, for 6ample, the perfect numbers, which'are the sum of

all their divisors (including 1 but excluding the number itself, as

6 = 1-+ 2 + 3 and 28 = 1 2.+ 4 + 7 + 14).
'

In thte seventeenth century, the earlier work on number theory

was organized and significantly extended, arid the outlines of what is

now known as the mathematical area of number theory began to take

shape. 'The French mathematician Pierre de Fermat (1601-1665) is con-
.

sid6red by many to be the founder of the theory of numbers asp in=

dependent mathematical area. To convey the flavor of his research,

it is easiest to give two of his results, which can be understood' °-

without any specialized knowledge. The two we have selected are:

Every counting number can be expressed as the sum of the

squares offour whole numbers.

, If 2 is a prime and of the form 4n + 1 where n is

a counting number, then 2 can be expressed as the sum of

the squares of tdo counting numbers. This expression is

unique up. to the order of the terms in the sum. No prime

of the form 4n + 3 can be so expresed.

In addition to the many-theorems for which he provided proofs,

Fermat is famous for a theorem:

or.actually a conjecture, for

which he did not leave a proof,

at least so far as we know.

It is easy to make conjectures

in thathematics; it is diffi-

cult to make conjectures that

influence the development of

an area or stimulate a great

deal-of significant work'.

Fermat's conjecture, also,

known as Fermat-'s last tbedrem,

m K K= pK

ON LY INNEN K=I
A NI D K=2
I THiNK

20



is of the latter sort. 'It is:

The equation mk + nk
k

has solutions m, n, p

in counting numbers only for k = 1 and k = 2 (ex-

ampTes for k = 1 are 3 + 2 -45 and 20 + 21 = 41,

and for k = 2 are 32 + 42 = 52 and 122 + 52 = 132):

Conjectures abound.in number theory. Several others are mentioned in

the exercises of the unit.

Like most areas in mathematics, number theory does not exist'in

isolation, but,has significant connections with other areas. As an

illustration we mention the number-theoretic aspects of certalh geo-

metric constructions.

A Euclidean constructiomis a geometric constructton.that can be

performed using only straightedge and compass. The German mathemati-

cian C. F. Gauss (1777-1855) proved that there is a Euclidean'con-
.

.struction of a regular polygon with N sides if and only if N is

the product of distinct primes of a certain type and 2 raised to some

power. The Greeks knew the Euclidean constructions for polygons with

2, 4, 8, 16, ... sides and with 3 and 5 sides. Combining these thei''.

Could construct polygons with 3.2c and 5.2c sides, where c is any

whole number.

Magic squares such as this one whose'

rows, columns and diagonals sum to 15,

have a long history. Some date back to

ancient China, while others 'are_Much more

recent. Benjamin Franklin constructed

some remarkable magic squares and also

magic circles (see the reference Invita-

tion to Number,Theory by 0.'Ore).

2 9

7 5 3

6 1 8

There remain many unsolved probleniJ, ber ory that are

the subject ql_current mathematical research. It s interesting that

the modern digital computer is a useful tool for this research. The

ability of the computer to carry out millions of arithmetic calCula-

dons each second permits the use of techniques that are completely

unfeasible by hand or with desk calculators.

10;
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l Certain-tovicsTfrom number theorY, for example, odd and even

111/1

numb6-s,multiples and factors,,have gradually become a part of the

elementary curriculum. °Recently, other topics, such as primes arid
.

.

factor trees, have been added. One reason for the inclusion of

selected topics from number Weory is that they can be applied to

ofKer topics in the elementary mathematics curriculum. For example,

odd and even numbers, multiples, and factors are closely related to

the basic ideas af'multiplication and division of whole numbers.
.e1"Nc I

Ocher examples are, the use of the greatest common factor in simplify-,

ing a coMmon'fraction:
.., 8 24,2

(here 4 is the greatest common factor of 8 and 12), and the use of the

leiit common multiple in adding two fractions with different denomin7

ators:
5 1 15 , 4 19

-8. -6- -g- 24 24.

(Here 24 is the least common multiple of 8 and 6.) In this example, the

III

least commoh 'multiple of 8 and 6 was used as a denominator in appro-
5 1

priate equiValent forins of -§ and .6.

Another reason for including topics from number theory in the

elementary school is that

there are many interesting

. and challenfling problem-

!solving activi.ttts with a

ilpumber-theory flavor. 'For

example, weMention 'activ-

ities with figurate num-

bers (see Activity 9 and

the Appendix) and the games

of Multo* and Prime Drag**.

.*Multo. Urbana, Illinots: University of IllinOis Curriculum Labora-
COT,i7gOoker T. Washington School, 1969.

**Prime Drag. Palo Alto, Cal.: Creative Publicatians, Inc., 1969.

.11
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Although there are obviously more alternatives gt the upper ele-

mentary grades, there are nevertheless many number-theoretic topics

and situations that can be explored-with priMary-level children. For

example, the properties of even and odd
EVENS ODDS

numbers can be developed with the use

of rectangular arrays. The even numbers

such as 2, 4, 6, can be represented by

a rectangular array with two complete

rows; but the odd numbers, such as 1, 3,

5, cannot be represented by a rectangu-

lar.array with two complete rows. Using

rectangular arrays can aid in establish-

ing the, arithmetic properties of the

even and odd numbers. For example, an even number added to an even

number results in an even num-

ber, an odd added to an odd re-

4 I

a

ample, have you observes:1 that

on a 10 x 10 hundred's chart

even + even = even

odd + odd = even

even + odd = odd

sults in an even, and an even

added to an odd resUlts in an

odd. Also, there are interest- '
ing number-patterns 0,n hundred's

charts and calendars. For ex-

none of the numbers surrounding 24

is divisible by the factors of 24,

4 and 6, while on a calendar there

are numbers surrounding 24 which

are divisible by 6 (18) and 4 (16)?

Notice also that -the numbers on one

dtagonal through the 24 on a calen-

dar are divisible by a; 'Whereas none

of the numbers on the other diagonal

is divisible by 8, but they are all

12 23

HUNDRED'S CHART



divisible by 3. Is there an ex-

4111

planation fiumthese facts?

CALENQAR

Finally, there are problems in elementary mathematics that cam

be solved directly by number-theory. For example, bow many different

rectangles can be constructed-with sides of-integral measures and an

area of 24 square units? Are,there more recrgles with different

shape with area 27 square units or 24 square units? It is clear

that the anSwers to these questlons are related to the number of

divisors"of 24 and 27. In fact, since 24 has eight divisors, the num-

ber of different-shaped rectangles with area 24 is four. Why? Simi-

larly, the number of different-shaped rectanglesof area 27 is NO.

There are activities in the unit designed to expand' your view of

11110 number theory,and to provide you with ideas and techniques that may

help you appreciate the number-theoretic content of the mathematics

you will meet in and out of the classrooM. The4 are also activities '

whose primary goal is-to develop miterial that is frequently found

in elementary textbooks. Finally, there are activities whose purpose

is to alert you to some aspects of the pralem-solving process.

L.

13
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ection I
DIVISIBILITY, PRIME NUMBERS

AND FACTORIZATION.

The prime numbers,are the multiplicative building blocks of the count-

ing numbers: if a counting'number is factored into a product of small-

er nlimbers each of which can be factored no further, then the smaller
1

numbers are prime numbers. In addition to thit basic property, there

are many other fascinating relationships and patterns involving prime

and counting nUmbers that art.interesting in their own right.

The purpose of Activities 1 through 4 is the development of the

11111

concept of prime number, the prime numbers as "building blocks" in '

. the counting numbers, and the relattd idea of divisibility. The ques-

tions "How many prime numbers are there?" and "How are the prime num-.

,bers distributed lh the sequence of counting numbers?" are consid-

ered in Activity 5. The topics of, Activity 6 'are the notions'of

lest common multiple and zeatest common divisor and their relation-

ship to prime numbers and prime factorization. The final activity,

Activity 7, is a seminar, which reviews the section and asks-ques-

tions related to the study of number theory as an intellectual activ-

ity and the role bf number theory in the elementary school. Distrib-

uted through the section there are three projects that you will be .

asked to complete outside,of class. They are more substantial than

exercises and should serve as an introduction to some of the kindt of

questionluput mathematical problems lying near the surface in number .

theory.



MAJOR QUtST1ONS

1, Discuss'in ,ko-ur own words thestatement "The prime numbers act 1110,
as building blokssfor the counting:nuMbers." Give examplePto

illustrate your discussion. Are there other sets of adrilbers,

that serve as building blocks for the counting numbers in a dif-

ferent sense?,
.

. biscuss (he advantages of using trains or tiles to introduce the

concepts of prime and composite numbers with children. In your

discussion, comparelhe Method of trains or tiles with a method

that proceeds by definition and examples.

3. Disduss, how a multiplicatfon.table could be used toinic7oduce

the concepts of priv and composite numbers to children: Compare

this method with others out142ed in the section.

4. Is it worthwhile to introduce the concept of prime number in the

elementary school? Support your answer.

5. Identify those number-theoretic concepts that are suitable for

inclusion.in\the primary grades. For example, you might cite

even and odd numbers.

6. 'How could Cuisenaire- rods be used to,introduce the idea of the

least common multiple of.two numbers?

7. From your general knoWledge of mathematiCs, find another instance

(there are several) in which a set of mathematical objects or

concepts can be "constructed" in some sense froM a proper subset

of that set, [The counting numbers'(the et), primes ,(proper

subset), an the operation of multiplication (method of con-

structing) rovide one such instance.] Oescribe how the whole

set is.to constructed from the subset. Illusekate your ex-

planation with examples,

26
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ACTIVITY 1

DIVISIBILITY

FOtUS::

Many of the facts,q)roble and retults of elementary number-theory .

involve the idea and properties of divisibility. In,this activity we

c011ect and ocganize Some information that will be used throughOut

the'unit.

DISCUSSION:

When. One divides one counting number by another, the spedial case Of ,

a zero remainder is suffiCiently ipterestingoto. merit further ttudy.

For-example, 15 divided by 3 has remainder zero, aS does 28 divided

by 7. In such circumstances we say that 3 divides 15 evenly, or as

we prefer here, simply 3 dividet 15. Likewise we say 7 divides 28.

Weintroduce-the notation 7128, which should be read "7 divides 28,"

to'express this divisibilOty property symbolically. Since 28 = 7 x 4,

we also have 4128. In. general, if' a and b. are counting numbers,

then /gb means.that a divides 'b, or equivalen4y, b is a mul-

tiple of -a.

A
EXAMPLES

35 = 5.7, and consequently 5135 and 7135.

20 = 5.4, and consequentlx 5120 and 4120.

Since 20 = 52.2, we also have 2120.

Since 21 =3.7 and 6 = 2.3, it follows that 3121 and 316. Is.it also

true that 31(21 + 6) Ind 31(21 - 6)? Using the fact that 21 + 6 = 27

= 3.9 and 21 6 = 15 = 3.5, we see that 31(21 + 6) and 31(21 6),

Does this bold for numbers different from 3, 21 and 6? 'The answer is

yes, and a general statement of the property exemplified above with

17
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3., 21, and is as follows:
.

,

Let )a,,b., be counting numbers, a 0. If

and alc, then al(11 + c) and al(b - c).

To help us Understand why this is tte tase, we will rewri.t the argu-

ment given above for the special case a = 3, b = 21, c = 6, in

one column and the argument for arbitrar:y at b, t in an adjacent

column;

Special. Case

\NO
1. Since 3121, .21 is a multi

ple of3.1 21 = 3.7

Since 316, 6 is a multiple

of 3; 6 = 2.3

iii. 21 + 6 = 73 + 23 =

so 31(21 + 6), by the def

injtion of divisibility

\21 - 6 = 7.3 - 23 = 5.3,

sO 31(21 - 6)

Generat Case

Since alb, b -is a mtirple

of a; suppose b-= M.a,

Where m is a counting number

Since alc, c is a multiple

of a; suppose c = na, where

n_ is a counting number

h + c = rva + n.a = (m + n).a,

so al(b; t c) by the defini- 11110

tion

b,- c = m."a - na = (m - n).a,

so al(b - c)

DIRECTIONS:

1. Write out an argument as in the Special Case ebbove for a = 6,

b = 42, c = 18.

2. Try,to write out an'argument, as in the Special Case above, for'

a = 6, b =42, c = 15.. What is wrong?

, 3. If alb and alc, does it follow that alb.c? Why?.

4. Give three examples that help yOu,to conjectUre an, ansWer to the

question: If alb and al(b + c), does alc?

18 8



Lf alb and bic, does alc? Give three examples; then answer

the question.

.6. If alb and alc, doa1(2b + 3c)? Give an example; then

write out an argumentin two.columns, as.above, which provides

an answero the general assertion.

19
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ACTIVITY 2

, PRIME AND COM#OSITE -NUMBERS

FOCUS:

rrime numbers can be viewed as.the basic building blocks or ".indecom-

potable" countinglnumbers. In this activity,. We introduce pride and.

compOtite numbers by working with either a set of Cuisenaire rods or

a set of tilos.. These two ways'of introducing the ideas, both of

which Utilize concrete materials, are easily adapted to the elemen-
.

tary classroom.

'MATERIALS:.

Set of Cuisenaire rods and:at least.20 tiles.

'DIRECTIONS:

-;

You (or your group) will be assigned either4art A or Pant B by your

instructor:. After completing the atsigned part, discuss 'and compare

your work with someone who has completed the other part.

PART A: Primes and Tiles

Tiles can be arranged to form rectangular arrays. The arrays shown

in Figures 1.arid 2 below arg rectangular arrays, while the array

shown in Figure.3 is not. (Rectangular arrays can be presented to

children as chocolate bars--a candy bar divided into sections.) We

will always think of.rectangular arrays as those in which the sides

of the tiles are parallel to the edges of the table on which you are

working.

2 x 3. array

Figure 1

1 x 4 array

Figure 2

20 30

not a rectangular array

Figure 3



,

1. Take two, of the tiles and determine hoW many rectangular arrays

there are if a 1 x 2 array (two tiles across and one tile up) is ,

considered different from a 2' x 1 array (one tile adi=Oss and Cwo

tiles up). Deduce the set of divisors of 2 from the sizes, of
"

the arrays. This information has been recorded in the line

labeled 2 in the leftmost column df Table' A (next page).

2. Take three tiles and determine the number of rectangular arrays

which can be formed frOm three tiles. 'Record this information

in the line labeled 3 in Table A. Continue for four, five, six,

..., twelve files, and complete Table A.

3. Use Table A to, identify thoie numb-ers between 2 and 12 (inclu-

sive) that have only bwo divisors: 1 and the number. List them.

All counting numbers with this property are called prime numbers.

4. Use Table A to identify thos b. numbers between 2 and 12 (inclu-

siVe) that have more than two divisors. All counting numbers

with this property are called composite numbers. Find those com-

posite numbers that have an odd,number of divisors-. What is an-

other way'of descilbing,these'numbers?

5. There is one counting number that has less than two divisors.

What is it? This number is placed in a,class by itself since it

is neither prime nor composite according to the definitions.

21



TABLE A

Number of
Tiles

Number of
Rectangular

Arrays

Dimnsionse
.

of Each
Array

N umber of

Divisors
Divisors

.

2 2
2 x 1

1 x 2
2 1, 2

3 .

t

,

5

,

.

6

7

,

.

8

9

,

.

,

10

11

12

It is interesting to note that activities like this one actually ap-

pear in elerfttary text series, cf., Heath Elementary Mathematics IV

(1975), p. 232.
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PART A: Prirhes and Trains

In th'is part an arrangement of,eqUlvalent Cuisenaire rods-4rods of

the same len9Ort placed end to end will be called a train. Three

trains of the same total length are shown in Figure 4.

Dak Green

Red Red Red

i"kWe INW Woorecor 1041W
moll;

eirciriVoTalreTOMTOIroTaro 611#OP

Figure 4

There is one more train of length 6. Can you find it?

Trains can be described mathematically by multiplication. For ex-

11111

ample, in Figure 4 we can describe the top train by

1 x 6 (= 6),

the middle train by

3 x 2 = 6 ,

and thv bottom train by

6 x 1 (= 6).

In each case the first figure on the left refers to the number of

rods and the second Igure refers to the rod value. The produtt in

parentheses gives the total length

3 X 2

Number of
Rod

rods in
value

the train

of the train.

(=

Length
of train

That is,

6)

23
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Number-Color Code

White is one unit

White (W) 1 Dark Green 6

Red 2 Black . 7

Light Green 3 Brown 8

Purple 4 Blue 9

Yellow 5 Orange 10

1. How many trains have the same total length as a red rod? Deduce

the divisors.of 2 and record this information in the line la-

beled 2 in the leftmost column of Table B.

2. Repeat (1) for the light green rod. Continue for the rods with

values 4, 5, 6, ..., 10. Rods of lengths 11 and 12 are pictured

below. Use them to complete Table B.

Rod with value 11

Rod with value 12

3. Use Table B to determine which numbers between 2 and 12 (inclu-

sive) can be the length of only two trains. Such numbers are

called prime. How many divisors does each prime number have?

(Be sure to count 1 and the number itself.)

4. Use Table B to determine which numbers between 2 and 12- (inclu-

sive) can be the length of at least three trains. Such numbers

are called composite. Some composite numbers" can be the length

of an odd number of trains. What is another way of describing

these numbers?

5. A prime number has exactly two divisors and .a composite number

has more than two divisors. There is one counting number that

has exactly one divisor. What is it? It is placed in a class

by itself since it is neither prime nor composite, according to

the definitions.

24



TABLE B

.

Color of
Rods

Rod

Number

Number of
Trains Of

Equivalent RodsA

Number of
Divisors

Divisors

Red 2

3

4
.

5
,

9

,

10

11 .

.

12

It is interesting to note that activities like this one actually ap-

pear in elementary text teries, cf., Heath Elementary Mathematics IV

(1975), p. 232.
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ACTIVITY= 3

FACTOR TREES AND FACTORIZATION

FOCUS:

The idea of the primes as"bLfilding blocks" is pursued in this activ-

ity, and the representationof any counting number as a product of

primes is introd eb., Fa or trees and'their relation to factoriza-

tion will be c sidered. ., This lctivity consists of three parts:

Part A. FactorTrees

Part : Factorilation Into Primes

Pa C: Exponential Notation and the Prime Factorization

Theorem

PART A: Factor Trees

In co tructing factor trees, we shall not admi factoring into fac-

tors one of which is 1. For example, We -shall n t admit-7 =14 or

12 = 1.1

DISCUSSION:

The construction of factor trees such as those shown on the aceompaliy-

ing textbpok page (page 28) can be an interesting and enjoyable child

activity in itself.' Moreover, constructing a tree is a quick and'

easy method of finding the prime factors of a number. In this act*"

ity, the,emphasis is on the cOnstruction of factor trees and o6 the

relation between the,factor trees of a number and the factorization of

that number into prime faCtors. Theuse of the prime factorization

of numbers in adding, multiplying; and "reducing" f ctions will be

the topic of Activity 6.

36
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DIRECTIONS:

1. Examine he textbook page reproduced on page 28 of this unit

For each of the four numbers below, extend its factor tree until

you hav obtained all the priMe factors of the ?umbers.

. 210

5 42

2925

5 585

13 45

858

1785

3 595

2. Let us agree that two factor trees are different if there is at

111/0 least one number that is factbred into one pair of factors in

one tree ind into a different pair of factors in the other tree.

For example, consider.the three factor trees of 12 shown below..

12 12

YV

2/6\3

A
3 4

2 2

(ii) (iii)

Factor trees (i) and (ii) are different, while the trees'(ii)

and (iii) are not different. The above example shows that,a com-

'posite numbet may have more than one factor tree; i.e., it,may

have at least two different factor trees.
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Performance Objective: To use a factor tree

A factor tree
can help up find
the primeractors
of a number.

Factor Trees

2

18

.
9

3/\3

3

24

.

,

87 \
2 /4

2 2

Copy and complete eadh factor tree.

EkERCISES

2.
6
7

( \?

24.\4

? \? ?

32/ N8
/

? 2 ?
/

? ?

4.

Copy and complete.

36 2. 42 3. 45
/ N9 / \ t N

4 6 . ?* 9 ?" /N / \ / \
? ? ? ? ? ? ? ?

4. 48 5. 63/ N. / \.
6 8 ? 9/ \ / \ /N.

? ? ?- /4 ? ?

? ?

..jv Make a factor tree for each.

'54

6/ N9

\?/ ? ? ?

1. 81 2. 124 3. 144 4. 108

CI 1973, General Learning Corporation, Morriiiownl New Jersey.
Silver Burdett Mathematics; Grade 4, p, 299: Jleproduced ioth

permission.
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A factor tree will be called. compTete if the nuMbers.at

the endt of the "twigs" are all prime numbers: For example (i),

(it), and (iii) above are,.all complete'factor trees whi,le

12

A
is 'not coMple6, since 4, is composite.

a) Find all .'he diffuent,complete factr trees of 30.. (Hint:

There are three.)

b) Find-all the different complete factor trees of 36. (Hint:

,-e-There are,tix.)

c) Find all the different complete factor trees of 72.

3. Find three, composite numbers that do not have at least two dif-

ferent factor trees. Mhat ls their Common property?

4. Is each prime number already a complete factor tree? Given any

whole number except 1, do you think lh t it ia possible to MI-

struct a complete factor tree for thafl number? Explain yout

reasoning.

5. Write each of the following numbers as a product of primes.

30 =

16--

39 .

60 .

72 .

Given any composite whole numtei is:it possible to write it as

a prbduct of Rrimes? Explain your reasonin and compare your

answer to this question to the answer You g4 t the second

%question in (4) above.



6. In corisidering factor "trees"

did you ever ask yourself

whether the arboreal metaphor

really stands up? That is,

you may have asked yourself

why factor trees do not grow

upwAd if they are supposed

to be trees. In "some'text-
-

books factor trees do grow

upward. Consider the advan-

tages and disadvantages of

each notation. When trees are

used extensively in class dis-

cussions the various arts.

0, are given names sui as branch,

fork, and twig.
\

DISCUSSION:

PART b: Factorization into Primes

After your experience in constructing factor ,trees in Part A, you

probably came to feel that you can construct a complete factor tree

for any counting number greater than 1. Although the terminology of

factor trees is ore appropriate for itse with cKildren,.there is an ,

economyrof spac nd a conceptual ease'associated with the factoriza-

tion point of'v Indeed, another way of representing the factors

of a counting nu is to write the number as a product of primes.

For example, 30 .5 and 84. 2-.2.3.7 are representations of 310''

and 84 as products primes. Each counting number can be so repre-

sented, and a formal proof of this fact i4 not difficult. (Intu,ltive7.

ly, one can argue that if a number is prime, then the represefreation

is complete. If not, then it is composite 'and conseqUentlyels the

product of wo strictly smaller numbers. Each of these is either

prime or composite. If either factor is composite, ttikthat factor

mbst be factor 'Te-01-6-irrialler numbers, and so on. Eventually a



-4

stage must be reached at which all the f4ctors are primes.) This is

the co-nt5rof the Prime Factorization Theorem, which we noW state.

f N is a counting number greater than 1, then N can

be written as a produceof prtmes.; that is, there are

prime numbers ,p1, pk such that N = p1p2...pk.

Note tha.L k may be 1; that is,. tf N. Is prime'then the

factorization is cOmplete.

For example, using the factor tree (i) of Part A we can write 12

.2.2.3.

DIOECTIONS:

1. Write out a prime "factorization of 100.

100=

Comment:

You may haVe observed in Part A, especiallY in exercise 2, that no

matter how the factor tree for a numberjs constructed, one alvitys:

ends up with the same prime factors and the same'number of eacl; fac-

tor. For example,'the three factor trees for 30 (Exercise 2(b)) all

involve the prime factors 2, 3, 5. A similar result holds in general.

If N iS a couRting number ,greater than 1, then every

prime factorization of N is the same except possibly

for\.the order of the factors.

\

2: 06 = 4.9 = 6.6. Hence a number can have' two composite factoriza-

tions that are not the same (even if the fattors were reordered).41,_

find another number with at least two differenecomposite fac-

torizaticis.

3. Why are the prim47numbers called prire aid the composite numbers

called composite? Alternatively, do the names "prime" and "0111-

posite" provide reasonable descriptions of the characteristics

of the corresponding numbers?

31-
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4. If one interprets a,prime to be its own'orime factorization,

Can he state that "everY counting number lreater than 1 has a

prime factorization"? Can-he.state that "every counting number

greater than 1 has a unique prime factorization (if the order.of

the prime factors is, disregarded)"?

5. In what-respects would the ptime factorization results be less

sadsfying if the term "prime" had been defineq.so that the num-

ber 1 was a prime?

PART Ci Exponential Notation and tiie Prime
Factorization Theorem

DISCUSSION:

A more compact representation of composite numbers i!,p,pssible if one

uses exponents. For example, in Part B we wrote 12 = 2.2.3 and,

using exponential notation, this can be written as 12 = 2
2
.3. Here

the product 2.2 nas been written in exponential form as 22. In

general, if n 'is a counting.number and nn.n is a product of

m factors each of which is the number n, then, using exponential

notation, this product can be written as nm. Two examples are:

250 = 2.5.5.5 = 2.5
3

and 16 = 2.2.2.2 = 24

DIRECTIONS:

1. Factor each of the following Composite numbers and express the

result using exponential notation.

39 =

60 =

512 =

27=

2. State the prime faclorizatIon theorem '(Part B, p. 31) using ex-

ponential notation.



3. Let p and q be primes and b ,a counting number. If. p b

and q1b, then p.q1b.

0 Verify thii assertion in three special cases.

.ii) Show by example that the assertion is false (in general) if

p or q is composite.

iii) Give an argument that justifies the assertion as stated in

the general'case (i.e., do not consider more special cases
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PROJECT 1

E-PRIMES

COMMENTS

In the.previous activities.of this.unit, the nbtions of prime number

and factorization' wiih respect to the set of cbunting numbers have

been studied. Here the concern is with the faCtorizaiion of numbers

in the set E of e4n counting numbers: E = {2, 4, 6, 8, ...}. In

this set there are numbers that cannot be written as a product of two

other elements of the set. For example, 6 cannot be written as a

product of two other elements of the set. (Of course, 6 =.2 x 3, but

the number 3 is not in the set E.) An even number n 'will be called,

E-prime if cannot be expressed as a product of elements of E.

For example, 2 and 6 are E-primekwhile 4 is not since 4 = 2 x 2. An

even number is said to be E-composite if it is' not E-prime. Hence,

4 is E-composite. The Object of this project is to explore the anal-

ogy between E-prime numbers and ordinary prime numbers. Some spcific

exercises,and questions are posed below. As you answer these ques-

tions, compare your answers concerning E-primes With what you already

know about ordinary primes.

EXERCISES'AND QUESTIONS

1. Determine the first ten E-primes. (The first two E-prime num-

bers are 2 and 6.)

2. Can every E-composite number be factored into a product of E-

primes?

3. List several even numbers that have only one factorization into

E-primes. (Disregard the order of the factors.)

4. Find an even number whose E-prime factorization is not unique,

that is, an even number that can be factored into products of

E-primes in at least two different ways. (Disregard the order

of the factors.)

5. Find a simple test to determine whether an even number is an

E-prime. (Hint: Use the Prime Factorization Theorem.)

34

44



ACTIVITY 4

TESTING FOR DIVISORS

FOCUS:

This activity is organized as a group discovery session.to determine

divisibility tests for several small counting numbers. The gotl is

to develop a method of determining quickly and easily whether a small

counting number divides a largerone:

DISCUSSION:

One method of showing that'e number is composite is to find a divisor

(different from'l and the number). Also, even if a number is knoWn

to be coMpOsite, one may be interested in 'determining its factors.

In this activity you will develop some divisibility tests (i.e., means

of determining rapidly and easily whether one counting number divides

another). For example, does 2 divide 720? Does 5? It is not neces-
,

sary to actually perform the division to answer the questions. Indeed,

the divisibility ofa number by 2 and, 5 can be determined simply by

inspecting its digits. Several such tests will be developed in,this

activt*.

DIRECTIONS:

After giving a brief introduction to the topic, your instructor will

°divide the class into several groups and assign small counting numbers

to each group for investigaiion. FOr exaMple, suppose that 2 is one

of the-numbers assigned to your group: Your problem is to determine

a divisibility test for 2, that is, a method for determining whether

a counting number is divit-ible by 2 by simply examining its digits.

Appoint one member of your group as e discussion leader and an-

other as recorder. It is_likely that most of your time will be spent

in making guesses and working examples. Working examples and study-

ing special cases, either independently or as a group, is, a profitable
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activity. Do your work with pencil and paper so that jou can share

your fdeas with others.

If you find yourself temporarily stumped, you might iSk your in-
, -

structor to point out some worthwhile questions to ask and/or helpful

directions in which to proceed. Do not expect your instructor to

provide you with tests!,

If your group discovers a workable test, report it to your in-

structor. A summary of the results will be prepared, and after the

group activity: is completed the entire class will discuss the results.

The question of justifyinTthe tests will be considered. You should

keep a record .0 the tests in the table "Summary of Divisibility

Tests" on page 37.

TEACHER TEASER

Is n
2

- n always divisible by 2?

1s n
4

- n always divisible by 4?

Is n
3

n always divisible by 3?

Is ,n
5

- rr always divisible by 5?

Is n
1

n always divisible by 1?

Ls there a pattern?
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TABLE

SUMMARY OF DIVISIBILITY TESTS

DIVISOR TEST

2

4

5

6

7

r,

8

9

10

11
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Some applications of the divisibility te.sts to factoring prob-

lems follow below:

1. Use the divisibility tests developed above to determine the divi-

sors of each of the following counti.ng numbers and felor each

into a product of primes.

a) 78

b) 693

c) 12,760

d) 342,540

'48
38
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2. If two counting numbers have the same digits but in the reverse

order (for example, 254 and 452), then their difference (the

larger minus the smaller) is divisible by 9.

a) Verify this assertiPn fpr the number 563.

b) Verify this'assertion for the number 378,501,

c) Try to justify the assertion for a general three-digit number

N = 100a2 + 10a1 + ao, where, a2 > Ao.

39
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PROJECT 2

HOW MANY NUMBERS TO TEST

COMMENTS

When,one is faced with the problem

of finding all of the divisors of

a counting number N, there is an

obvious advantage in using a sys-

tematic pi=ocedure. If one simply

tries potential divisors of N at

random, there is a high likelihood

that some divisors will be missed

and, especially if N. is large,

some effort will be dupliclpied.

There are several different system-

atic procedures, but one of the most

natural is lo begin with 2 and try

each counting number in order to

determine whether or not it is a

divisor of N. ft is a useful fact that one need not try all the

counting numbers smaller than N to determine all the divisors. In

fact, one can stop well short of N. We can now formulate a precise

qu'estion.

QUESTION

In order to determine al3 of the factors of N by testing

each counting number in order, beginning ;tith 2, what is

the largest counting number that must be tested?

Denote this largest number that must be tFsted by L(N).

A useful aid in answering the question is contained in the following

observation. If one knows that a counting number p 4s a factor of
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N, then one can dete'rmine a counting number q such that p.q = N.

111/0

Indeed one can take q = N/p. It follows that tf one knows the set

of all factors p such that pq = N and p 5 q, then one knows,
the set of all factors of N. Stated somewhat differently, every

pair of factors of N contains a "smaller one" (or two equal ones).

A knowledge of this "smaller one" determines them both.

EXERCISES AND QUESTIONS

1. Complete the table below.

Number
N

Pa"irs of Factors of N
Smaller of
the Pair

-L(N)

24

1, 24

2, 12

3, 8

4, 6

1

2

3

4

4

12
-

,

36

60

.

For each N the entry L(N) in the last column can be obtained

by ins-pection from,the third column. According to its defini-

tion, L(N) iS the largest of the entries in column tee for

that N.
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4.0e=

2. For a colinting number N, let n be the largest counting num-

ber such that n-n 5 N.

,N = 24, what is n?

If N = 12, what is n?

If N = 36, what is h?

If N = 60, what is n?

In each case how does n compire with 1(N)?

3. Justify the following statement:

If p-q = N, then either p or q Must be less than or

equal to n.

4. .Answer the Question posed on page 40. (Hint: ,Can you conclude

that L(N) n?)

5. As an application of the above, determine the largest counting

numbers that must be tested to find all the factors of each of

the following counting numbers:

100 64 1008 80 230

52
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ACTIVITY 5

DISTRIBUTION OF-THE PRIMES

,

FOCUS: -

Once you.have absorbed the idea of a prime number, an immediate ques

tion is "Is there an easy method to determine which numbers are

primes?" This turns out to be a questidn for Which there i no en-

tirely satisfactory a pier. Unlike theeven numbers (mu iples of 2)

or the multiples of 3 r 5, the prime nOmbers are not uniformlY dis-

tributed in the sequence o counting nuMtiers. The focus of this ac-

tivity is to identify some properties of the set of prime numbers.

The activity consists o'f three parts: the use of a -"sieving"

method with a takje of counting numbers to identify the primes includ-

ed in the table; an investigation of the number of primes; and an:

investigation of the occurrence of longlstrings Of consecutive compos

ite numbers.

MATERIALS:

Set of Cuisenaire rods,

-77r
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PART A: Identification iPlrne :Numbers
In a Table of Counting Numbers.

DIRECTIONS:

1. Th goal is to obtain all of the prime numbers between 2 and 103

tby rossing out all the compovitt nUmbers in the table: ok page

45. 7his table Of the 6rsi 109Ctua:11y 2 through 103) count-

ing numbers,is Arranged in1WCio1umns insteadof the oure common

ten columns, in ordef to bet,ter dfsplay some of the,features of

the distribution of Ihe primes in the sequence 'cif Counting num-

bers. Find a systeMitic method to identify the primes in the

table4nd write out a careful description of the method and whY

ft works.

2. Why might your method of identifying prime numbers be called a

"sieving" technique?

3. Find several patterns in the table and list them'. For example.
4,
where are the even numbers? Where ore the multiples of 3? of 57

Where are the'prime 'numbers?

4. Using.this table as a guide, complete the following statement:

every prime number greater than 3 is either one more than or

one less than a multiple of . .

5. How many primes are there between 2 and 100 (inclusive)?

6. Every prime number other than

2 is'odd. Why? Two consecu-

tive odd numbers that are

primes are called twin primes.

For'example, '3 and 5 are twin

prime's. List all pairs of

twin primes between 2 and 100.
III

7. A fa4is conjecture due to a Russian mathematician named Goldbach

is that,every even humber greater thaa 2 is the sum of two

.44
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3 4

9 10 11 12 13

14 15 16 17 18 19

r-
20 21 22 23 24 25 '.

26

32

27

33

28

34

r,

29

35

30

36

31

37
....

38 39 40 41 42 43'

44 45 / 46, 47 48 49

,050 51 52 53 54 55

564. 57 58 .. 59 60 61

62 63 64 65 66 67
.-

68 69 70 71 72 73

74' 75 76 , 77 78 79

80 81 82 83 84 85

86 87 ' 88 89 90 91

92 93 94 95 96 97

98 99 100 101 102 d 103
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primes. For example12 . 5 + 7 and 20 = 17 -1-'3: Write eaCh,

even number.between 10 and 50 (inclusive) as the sum of two:

primes. Goldbach's conjecture remains unsettled. That is, no

even number has Lteen found that cannot be expressed as the SO

of two primes; and no proof"has been found-that every even num-

ber can be so.expressed.

8. With the exception of the pair'3, 5, the sum of any pair Of tWin

primes is divisible by 12.

a) Verify this assertion for three pairs of twin primes.

1b) Give an argument that.justifies it in general.

9. Another conjecture by Goldbach(aiso unsettled) is:that every

odd number greater than 7 is the sum of three odd primes. I For
V

example, 9 3 + 3 + 5 and 15 3 + 5 + 7. Write eacridd num-

ber between 31 and 51 (inclusive) as the sum of three oddprimes.

10. Do the challenge problem at the end of'the,activity (page151).

PART B: The Unlimited, Supply of Primes

DISCUSSION:

When children or adults ref)ect on the idea of prime numbers they

often pose a question like one of the following:

c
NUGWEN ANY PRIME

M13ER, 15 ThERE
ALWAYS A f31G&R

ONE?
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'oe

To begin, takeh'a moment and verify that these questiOns are simply

111/0

different forms of the same question, and that if one can be answered

then all can be-answered. Suppose you wish to antwer the question,
)

"Given any prime number, is there alAys a bigger One?" Depending on

whether one believes-the answer to be yes.or no, one attacks the prob-

lem differently. If you believe the ansver to be yes, then you might

try taking various prime numbers and showing that in each case there

is a bigger one. At some point you must 'give a general proof or jus-

tification of your conjecture. 'On the other hand, if you believe the
t

answer is no, then you might try to find the largest.prime and show'

conclusively that there are no larger primes: A
1

You may be aware from your earlier work in matheMatics (or you

may have guessed from the title of this part of the acttvity) that

the answer to the' question is yes. That is, given ahy prime, there A

always a larger one. To verify this, we will give 0 method that

shows that for any prime p, there is a number which is

irlarger th/an p, and

ii) a prime

111/0 Proposed Method: Given p, find the product of all primes less than

or equal to p and add 1.

Using the proposed method, we can deterMine-the Missing entries

in the following table.
,

Given Prime New Number Generated by Proposed Method

2 + 1
,

= 3

. 3

,

(23) 4. 1 = 7

,5 (2.3.5) + 1 .

7 (2.357) + 1 =

11 ( ) + 1 =

13 ..
Y = 30031 = 59.509

17, .

-.. .

(2.,3.5...p) + 1

e

= .
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DIRECTIONS:

1. Fill in the missing information in the table as far as (and in-

cluding) the line correspondinig to the prime 17.

Note that the number's generated from (i.e., resulting from apply-

ing the,method to) the,primes 5, 7, and 11 are all prime, but

that the. number generated from 13 is not a,prime. , However, this

number, 30031, contains a prime fact6r, 59, which is larger than

13. Thus, although the new nuMber generated by the method may

not be prime, it reads.to a larger prime number thaft we started

with (at least-inithe cases we have examined).

2. Is-there an infinite number of E:primes? (See Project 1.)'

3. Additional insight into the proposed method can be obtained by

thinking of the table in terms of Cuisenaiire rods or ether con-

crete terms. Use Cuisenaire rods to answer the questions and

verify the statements that follow. Consider the prime number 5

and the newly generated,number (2.3.5) + 1. Can 2'be a factor

of this newly generated number? Can 3? Can 5? Consider 3, for

instance. Since 3 is a factor of 2.3.5, one can buil'd a train

of (2.5) rods of length 3 that has length 2.3.5. From this it

should be clear that it is impossible to obtain a train of rods

of length 3 that has length (2.3.5) + 1. Thus, in checking

whether (2.3.5) + 1 = 31 is a prime, we see that 2, 3 and 5 can-

not be factors of 31. Finally, since 5 is the largest prime such

that 5
2 < 31, these are the only primes that need to be checked

for factors of; 31 (see Project 2).

4. Give an argument for a general prime p analogous to that given

above for the prime 5.

PART C: Strings of Counting Numbers
Containing No Primes

DISCUSSION:

From Part B we conclude that there are arbitrarily large prime num-

bers; i.e., there are prime numbers larger than any given number. An
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image for this might be the mile

markers on,an endless interstate

highway. Suppose that gasoline

is available only at the markers

with prime numbers. The conclu-

sion of Part B is that there is

always a gasoline station ahead

of you no matter how far.you

travel One might conclude that

a trip could be arranged by

stopping at convenient gasoline

stations for fuel.

However, for such a trip to be feasible, one would have to know the

answer to the following kind of question:

Could we pass a string of 1000 consecutive mile markers

(counting numbers) without coming'to a gasoline.station

(prime number)?
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Before dealing with this question, answer the following questions in

order to make sure you unders-tand the "gasoline station" metaphor.

How many gasoline stations are there in the first 100 miles?' 1110

What is the maximum distance between gasoline. stations (in the

first 100 mileW

To ask if there is a string of 1000 consecutive mile markers without

a gasoline statfon is to ask if there is a string of 1000 consecutive

composite numbers.

There are extensive tables of prime numbers, whichupon close

examination, will reveal long strings of compostte numbers.. However,

one does not need to rely on tables; there is an easy way to con-

struct a string of composite number's of any desired length.. We illus-
,

trite the method by constructing a string of four consecutive compos-

ite numbers: 122, 123, 124, and 125 are composite. (Note that these

are not the first four consecutive composite numbers in the sequence

of cOuntin6 numbers; in fact, 24,.25, 26, 27, and 28 are.five consec-

utive composltes.) It turns out to be easy to show that 122, 123,

124, 125 are composite by a method that can be generalized.. Indeed, 1110

122 = 120. + 2 = (2-3.4.5) + 2 = 2[(3.4.6). +.1], so 21122,, :

123 = 120 + 3 = (234.5) +"3 = 3[(2:4.5) + 1]`, so 31123,

124 = 120 + 4 . (23,.4.,5).+ 4 .;.= 4[(2-3.5) + 11, so 41124,

125 = 120 + 5 = (2.346 -45 = 5[(2-3-4) + 1], so 51125.

For notational convenience we often abbreviate 1-2.3.4.5 by 5!, and

likewise for other.mhole numbers: 1-23.-p =.p! (head "p factorial"):

Using this notation, the above argument shows that 5! + 2, 5! + 3,

5! + 4, 5! + 5 are a set of consecutive composite numbers.

DfRECTIONS:

1. Use the method introduced above to produce a .string of six con-
. .

.secutive composite numbers. Find a divisor of each and theceby

show that your numbers are composite.

2. Tell how you would find a string of, 1000 consecutive composite

numbers.



CHALLENGE PROBLEM

Sequences of counting numbers that are uniforMly distributed in some

sense can usually be described by a mathematical formula. For

example:

Evens 2k, k = I", 2, 3, .-..

Squares k
2

, k = 1, 2, 3...

Differences of (k + )3 - k3 , k = 1, 2, 3, ...

Consecutive Cubes

Ma.thematicians have studied the problem of finding a function whose

value for each counting number is a prime. One can think of such a

function as taking the input 1 and providing as output a prime, say

pl, taking input 2 and providing as output a prime p2, and so on.

Consider the funftion g defined by

g(k) k2 + k + 41 for k a counting number.

a) Show that g(k) is prime for k = 1, 2, 3, 4, 5, 6, and 7.

(Hint: Use the table of Part A of this activity.) In fact

g(k) is prime for k = 1, 2, 3, ..., 39.

b) Show that 9(40) is composite, and factor it.

TEACHER TEASER

Prime triples are primes of the form

p - 2, p, p + 2. There is exactly

one prime triple. ,Find it. Provide an

argument showing that there can tle no

others'.

51



ACTIVITY 6

AN APPLICATION:. GCF AND LCM

FOCUS:

The purpqse of this activity is to introduce the concepts of greatesi

common factor and least common multiple and to investigate the rela-

tion between them and factorization into primes.

The adtivity is organized into.two parts. Paris A and B develop

(or review, for those students who_remember the ideas from their

school mathematics) the'ideas of greatest common faCtor and least

common multiple. Part C relates these concepts to prime factoriza-

tion.

PART A: Least Common Multiple (LCM)

DISCUSSION:

Examine the textbook page on page 53 of this unit. Amy computed

1 5 1 5
.5- + -6- by expressing both .§. and -6- as the correct number of eighteenths

Thatis, she expressed them both as fractions with the common denom-

inator 18. In identifying. 18 as an appropriate denominator she might

have argued as follows: The fraction 4. is equivalent to :14,

5 5 10 15 20 25
E--..... and the fraction -6- is equivalent to 717, TIT, lg, -370 ..., In

each case the denominators of the equivalent fractions are the multi-

ples ,of 9 and 6 respectively. As shown on the textbook page,

{6, 12, 18, 24, 30, 36, 42, 48,, 4, ./.} is the set of mUltiples of 6

1:.

and

S
.

.,

{9, 18, 27, 36, 45, 54, ...} ,
the set of multiples of 9.

It is evident that 18, 36, and 54 are (the first three) multiples

that are common to both sets. Hence 18, 36,'and 54 are called coMmon

multfples of 6 and 9. Any one of these could have been used as a

denominator in the addition-of-Tractions problem. The choice that

52
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USING THE LEAST COMMON MULTIPLE

A. Suppose you want to add and 2 . Can you rename Os some
number of sixths? Can you rename as some number of ninths?
Why must you rename both fractions?

Copy and complete the following examples.

BETH SALLY

1 6 1 4
9 54 9 36
5 45 5 = 30
6 54 6 36

51 .nr 11 11 21., Tr3 36 or' 18

AMY

1 2
9 18

+ =:11-
? ?
18

What did Beth use as a common denominator? Sally? Amy?
How should their answers compare?

B.'The number that Amy chose as a common denominator, 18, is the
least common denominator.

{6, 12,j 24, 30, 36, 42, 48, 54, .}

(9,I 27, 36, 45, 54, }
The least common denominator is the least common multiple of
the denominators.
List the multiples Of 2; of 3; 4; 5; 6; 8; 10.

What is the least common denominator for land 1? for 1-4 and I?

for I and 14- ? for 12-, i!6, andl?
Copy and complete the following.

1 7 1+ 2 7 3 15 8 ' To- '

C. Do 3 and 4 have any common factors? LEAST COMMON

Doll and 2? 8 and 5?
1 2

DENOMINATOR

.3
Compare the least common denominators

12

3with the denominators shown in ekh TT,
222

pair of fractions. 3 2

How are they related? 5 40

Copy and complete the following.

÷ " 2 "I 1 8 5 67 -"'"'

GID 1972, Harcourt Brace dovanovich, Inc., New York: H8rbrace

Mithematics, Purple, p. 156. Reproduced wi,th perMission.
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gives the smallest denominator is 18. This is the smallest or least

common multiple of 6 and 9.

DIRECTIONS:.

1. 'Find the least common multiple of each pair of nUmbers given

below:

a) 39

b) 10, 225

c) 12, 40

2. Until now we have been consideri g the set of counting numbers.

If we, look at the set,of whole nifmbers {0, 1, 2, 3, .:.}, then

10,

- {0,

6, 12, 18, ...I is the set of (whole number) multi-
'ples o .6;

9, 18, 27, ...} is the set of (whole number) multi-
ples of 9.

,

Hence a child would be completely right in saying that .0,is the

least common multiple of 6 and 9 (with respect to the set of

Nwhole nuMbers). However, i dding fractions as on'the textbook

page, it is necessary to use co nting-number multiples instead

of whole-nu4er multiples.' Why?

3, As a group, formulate a definition of the term least common mul-

pole of a kair of,gm10111 numbers. Later, each group will pre-

sent its proposed definition, and the'class will discuss which:.

definitions are acceptable. Your instructor will then ditto or

record on the blackboard the best definition(s). (By attempting

to work out a definition of LCM instead'of memorizing a printed

definition, you snould obtain a better feel.for the LCM conCelit.

and also for the considerations that go into creating good defi-

nitjons. The process of arriving at definitions is a very basic

and important aspect of mathematical thinking.)
i
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PART B: Greatest Common Factor (OCF)

DISCUSSION:

A knowledgy of a systematic method for finding common faetors or

greatest common factors can be useful in multiplying or simplifying..

fractions. For example, to simplify g the following Method could

be used:

{I, 2, 3, 5, 6, 10, 15, 30} is the set of factors of 30.

fl, 3, 5, 9, 15, 451 is the set of factors of 45.

The 1:argeSt factor that is..common to bothikts, the greatest commix',

factor of 30 and 45, is 15. Therefore, 15 is the largest, number that

is a factor of both 30 and 45. This information.can be used to sim-

pli4 aS follows:

DIRECTIONS:

;30 215 2

45

. 1. Find the greatest common factor of each of the pairs of numbers

given below'

a) 126, 35

b) 60, 75

c) 143°, 21

2. Working in small groups, formulate a definition of the tem

greltest common, factor. Each group's proposed .deffnitiontwill

be discussed by the class as a whole.

3. Give an example of a multiplication problem,involving fractions

:In which finding a GCF would simplify the computation of the

product. Complete the calculatiqn Of the product with.the aid

(
of the GCF.

4. Take a poir,of numbers, find their GCF and LCM, and compute the

product GCF x LCI.C, Repeat the process with a few other pairs.

What do you observe?
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5. Is the LCM of two numbers a multiple o? tfie GCF of those two

numbers? Try some examples.
;.(

6. Give a definition for the greatest common factor of three count-,

ing num6ers. use your definition and find the GCF of the fol-

lowing triples..

7.

a).30,

b) 143,

c 60,

Let a

21,

21,

210,

and

6

56

75

b

0

be counting numbqrs and defitie a*b to be the

greatest common factor of a and b. Does this define a binary

operation on the set of counting numbers? (A binary operation

on a set is a function which assigns a number tom the set to

each ordered pair of numbers from the set,) What properties

does the operation * have?

Suppose that the least common multiple of a and b is ab.

What can you, say about the common factors of a and b?

PART C: LCM, GCF, and Prime Factorization

DISCUSSION:

Sally attempted to find tne,least,common multiple of 9 and 6 by rea7

soning as follows:

"9 = x 3 and 6 = 2 x 3. There-

fore, if a number is to be a mul-

tiple of 9, it must have.two 3's.

injts prime factorization. If
4

it is to be a multiple of 6, it

Wusi have a 2 and a 3 in its prime,

'factorization. Consequently, the

least common multiple of 9 and 6.

Must have,one 2 and two 3's in its

prime factorization: the LCMOf

9 and 6 is,2 x 3 x 3 = 18."

56
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DIRECTIONS:

1. Try Sallys method to find the LCM of each of the following

pairs of'nUmbers:

a) 12, 40

b) 54, 72

c) 9, 39
1

2. Try to describe Sally's method sl9ccinctly and explain why it

works.

-

Sally.found her prime factorization MethOd so successful for finding

LCM's that.she worked out a similar Method for GCF's. Here's how

she found the GCF of 30 alnd 45:

30 = 2 x x 5

45 = 3 x 3 x 5

The GCF of 30 and 45 must beactor of both 30 and 45, Since -2 is

not a factor of 45, 2 cannot be in the prime factorization of the

GCF. 3 can be; but 3 x j cannot be,since 3 x '3 is not a factor of

30. 5 is a factor of both' 30 and 45. Putting this all-together, the

GCF of 30 and 45 must be 3 x 5 = 15.-

3. Use Sally's method to find the GCF of each of the following

pairs of numbers:
40

a) 54, 72

b)'60, 75

c) 198, 162
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Try to describe Sally's Method succinctly and eXplain why

works.

5. Use Sally's methods for finding thie,CM and GCF of a pair of

numbers to explain what you observed in exercises 4 and 5 of

Part B. !NY.

6, Explain how you can use the prime factorization of a number to

find all Of its factors. Also explain how you can 'use the prime

factorization oy number to find immediately how many factors

the number has. As examples to gei you started, we list the

folldwing:

6 . 2 x 3, and 6 has four'factors;

30 = 2 x 3 x 5, and 30 tlas eight factors;

210 = 2 x 3 x 5 x 7, crd 210 -h.as sixteen factors.



. PROJECT 3.-

A PARLOR TRICK BASED ON NUMBER THEORY

An old Chestnut _on the parlor circpit can be described as follows:

Ask a guest to write any three=digit number.on-a slip of paper, and

to pass the paper to the peXt,guest. This gUest isto.form.a six-

digit number by writing the origina1,6three.digits in orde twice.

for example, if the.originaldigits were 234; then the si digit num7

ber is 234234. The paperis passed. to the next :g est, o is,asked

to divide the six-digit number by 7. You can add, You need not be .

concerned about the remainder; tiTere will be rione." :The paper'is

passed to the next guest,who is asked 6 divide,the resulting quo--

tient by 11. Again you may comment that there no t4mainder.,

The paper is,passed to the next guest,'who. is asked to divide'the '

resulting quotient by 13; agaill there will be no remainder. Fidally,,

the.paper is'returned to the original guest, .Who observes that the

last quotient is his original number!

4

9

'0
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EXAMPLE

a) original num6er - 234

b) siX-digit. number 234234

c) quotient upon division of (b) by 7 33462

d) quotient:upon division of (c) by 11 3042
%

e) quotient upon division of (4) by 13 234

What is the number-theoretic basis for the trick?

Can'you 'construct a similar,trick?

17
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ACTIVITY 7

11111: SEMINAR

FOCUS:

This semina

ing number-

more specia

ber theory

ing methods

DIRECTIONS:

considers the generaLquestion of'the role ofinterest-

heory problems in teaching and learning mathematics. Also,

ized questionS are 'raised concerning the relation of nuth-

o other topics in the elementary curriculum ond concern-

of introducing number theory to elementary-children.

The questions that follow will serve as a basis for a class discussion..

1. Why is it that so many problems that ocOur in newspapers, maga- .

zihes, and collections of mathematical puzzles have a number-

theoretic base?

2. What are some'instances of number theory as numerology, i.e.,

the mystique of numbers? (You 'may want to do a, little library

work on this one.)

3. Two teachers were ealking in the faculty lounge of an elementary

school.

ralE SEcTioN ON NUMBER
I TflEoRY 6C4AIN6\44,8 NEXT

IN THE TEXTSOOK, SuT L
PLANT° SKIP IT. MY

CHII-PREN NEED TRE TIME.
FOR PRACTICE ON

CoMPuTATIoNAL SKILLS
IN MULTIPLICATION AND

A

-v

011, LVE 14A0 GOoP LUCK
WITH NUMBER Tf-lEoRY.

THE Ci4I1-PREN REALLY
tJJest IT1,AND I'M

AMKLED AT THE THiN&S
THEY DISCovER ON THEIR
OWN. ALSO, COULDN'T

YDU 13RokDEN THE
CHILKEN'S EXPERIENCES

wITH MULTIPLICATION
AND DIviSloN

PRESENTNO
APPROFRIATE TOPICS IN

MUMI3ER THEORY?
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In'light of this dialogue, respond to the following questions.

a) What nuMber-theory topics related to multiplication and divi-
.

,---sion might the second teacher have in mind? Take at least

One of the topics and discuss how you might teach it in order

to clarify and exterid the children's ,basig understanding of

multiplication and division. (In particular, suggest ,some

probing questions that might be used.)

b) Give some examples of number-theory probleMs that provide

children with the opportunity to discover patterns.. Suggest

some settings, materials., and questions that might aid the

children in the discovery process.

c) What additional arguments might be used to convince the first

teachqr that her line of action is unjustified?

4-1
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Section II
PROBLEMS AND PROBLEM SOLVING

One of the goals of this unit is to provide you, the reader, with an

opportunity to play the role of amateur mathematician.. A part 'of

the work of a mathematician is to construct theories; another part

is to solve problems. Difficult problems (and this includes some

that appear.on the surface to be quite ttraightforwerd) may require

sophisticated mathematical techniques for,their solution: However,

much less difficult problems may challenge your curiosity and inven-

tiveness and still be solvable with the use of elementary ideas and

techniques. The way in which problem solving can contribute te-learn-

ing mathematics' has been §uccinctly expressed by one of mathematics'

greatest problem-solvers, George Polya:

"Thus, a teacher of mathematics has a great opportunity.

If he fills his'"allotteci time with,drilling his students

in routine operations, he kills their-interest, hampers

their intellectual development and misuses his opportun-

ity. But if he challenges the curiosity of his students

by setting them problems proportionate to their knowledge,

and helps them to solve their problems with stimulating

questions, he may giVe them a taste for, and some means

of, independent thinking."

A great many problems hat occur in the classroom, in textbooks, or

in supplementary materi --or that occur in everyday life, in daily
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'activities, in newspapers, magazines.or puzzle books--have a number-

theoretic flavor. This sectiOn is devoted to the study of a few such

problems, and to mathematical problem solving in somewhat more gener-
.

ality. The broad theme of the section is pursued in greater depth

in the Experiences in Problem Solving unit of the Mathematics-Methods.

Program.

The purpose of Activity 13 is to get you started. It consists of

three short problems and related exercises. The problems are worked

out in varying degrees of-detail and in a conceptual framework that

Should be useful to you in solving the problems in Activity 9 and in

other mathematical probleM-solving Situations as well. Activity 9

contains a selection of problems; some are quite easy and others are

fairly difficult. A completely worked out problem similar to those

of Activity 9 is contained in the Appe-ndix: An Example of Problem

Solving.

MAJOR QUESTIONS

1. What are some advantages to organizing your approach to solving

a problem?

2. In what ways might problem solving reinforce the study of stand-

ard topics in the elementary mathematics curriculum?

3. Write a paragraph describing how one standard topic might be

presented in a problem-solving mode.

4. A common teacher reaction to a student's wrong approach td a

problem is, "Read the problem agatp." What is the teacher try-

ing to communicate to the student? What question could the

teacher ask in place of this one that might more effectively

achieve the objective?
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ACTIVITY 8

11111

ORGANIZING THE PROBLEM-SOLVING PROCESS

FOCUS:

This activity offers some guided experiences in solving mathematical

problems. It provides a basic organizational scheme in which much

of mathematical problem solving can be profitably viewed. (Read the'

discussion of Parts A, B, and C as a homework assignment, in prepara-

tion for class. , In class you will discuss the examples and do the

problems under "Directions.")

PART A

DISCUSSION:

From time to tiMe in your study of mathematics, either as a regular

part of the curriculum or as an extra.'-credit assignment, you have

been asked to solve problems. Here we will focus more directly on

the problem-solving process than on the task of getting answers to

specific.problems in the most efficient manner. We proceed in.a dis-

cussion in which the main ideas are illustrated with examples. In

keeping with the topic of the unit, we have selected relatively sim-

ple number-theoretic problems for our examples. You will have an op-

portunity to try your hand at similar problems, as well as some

tougher ones, later on.

The place to begin solving any problem is to ask:

65
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' An attempt to state the problem`in predse terms frequently suggests

lines of attack. In asking for a precise statement of the problem

one often asks for A translation from a verbal formiof the problem to

a mathematical one.

Next, one asks,

)It is important to decide what tools hd techniques can be used jn

studying the situation. Again, sorting through your store of mathe-

dtical knowledge looking for Ihmething useful. may suggest how to

approach the problem.

Responsiing to these questionp should be viewed as steps that'ione

always goes through in solving a problem. From here on, the.way,.in

which one proceeds will vary from one'problem to another. The tiri

proach used profitably on one problem--it might be termed a.strategy--

might be totally ineffective on another problem. We will mentioji and

illustrate briefly a few ways in'which problems can be approached.

We turn now to our first example..

EXAMPLE 1

Are there any perfect squares ip the_se'quqhce

11, 111, L111, 11111, .,.?

If we follow the approach suggested above, then the first step is to

decide exactly what the problem asks. In this case, the answer is

the following; Are there whole numbers n such that n
2

= 11, or

n2 = 111, or n2 = 1111, ...?
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Next we take inventory of what we know. We reCitl from Activity

2 that 11 is prime, and consequently there is no counting number n

such that n2 - 11. Alsb 102 = 100 and 112 = 121. Therefore, there

is no n with ry = 111. Next, 332 = 1089 and 342 = 1156; so there

is no n with n2 = 1111.

So far we have considered a number of special cases of the prob-

lem. Frequently the solution of special cases provides insight into

the general situation. In this case, the analysiS of some special

cases provides evidence that it is impossible to have a counting num-

ber n with n
2
= 111...11 for any number of l's. We guess a solu-

tion: There are no.perfect squares in the sequence 11, 111, ...

Let us see whether our guess can be supported or verified. We

ask again, what information can we use tp,convince ourselves that our

guess is correct? Remarkably, it is enough to know the simple fact

that every counting number is either 'even or odd. In particular, if

n is such that n2 = 111...11, thin n is either even or odd. We

separate the Problem into two subproblemS and consider them separate-

ly.

First, if n is even, that is, if n = 2k, then

n2 ='(2k)2 = 4k2 = 2(2k2).

Thus,:if n is even, then n2 is also even. But 111...11 is odd, so

n cannot be even.

Next, suppose that n2 = 111...11 and n is odd; i.e.,

n = 2k + 1. Then

(2k +

and consequently

1)2 = 4k2 + 4k + 1 = 111...11,

4k
2

+ 4k = 111...10.

The last equality can be rewritten as 4(k2 + k) = 111...10. Since

4 divides every multiple of 100, it follows that if 41111...10, then

4 must divide 10. That is,

111...1110 - 10 = 111...1100

= 100 x 111...11,

11111

and 4 divides 100 x 111...11, so if 4 divides 111...1110, 4 must also
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divide 10 (recall ActiVity 1). But since 4 does not divide 10, we

conclude that 4 does not dividelT77/.:10. This completes th'e argu,

ment that if n is odd, then n
2

cannot equal 111...11.

It IS helpful to revfiew-the

following diagram summarizes the

We introduced here the use

of special cases, guessing, and

sub-problems. The guessing

noted in the argument is worthy

of special comment. It is an

example of an extremely impor-

tant activity known as hypothe-,

sis formulation. In somewhat

oversimplified terms, it is

simply the generation of a

guess based on the evidence.

Although the generation of,a

hypothesis does not ordinarily

settle a problem (it usually

requires verification), It is

an important first step. It

sometimes happens that coming

up with the right hypothesis

is much more difficult than

showing that the hypothesis

is correct.

'401'

DIRECTIONS:

analysis of this prOblemand the

main steps.

Example.

What ts
Known

Precise
Mathematical

-Problem .

What is
Known

Study of
Special

Cases

Guess

Sqlution
of Problem

Verification of
Guess;
Separation into
Subproblems

1. Determine whether there are an perfect squares in the-sequence

22, 222, 2222,... How about 'the quence 33, 333, 3333, ...?

After making these determinations, think back and ask yourself,

"Have I used the steps suggested above?"
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PART B

DISCUSSION:

Another approach that is frequently useful in solving problems is to

look for patterns. Patterns may be obvious from the formulation of

the problem, or'lf pay require some insight to recognize them. Stnce

we are concerned with number-theoretic! problems in this unit, the .

patterns we will look for are number patterns. The term number pat-

tern means exactly that: an arrangement of numbers in which.the nu6-

bers are positioned according to some disternible rule. The way in

which one takes.advantage of a number pattern to help solve a problem

.is best illustrated by an example. A final caveat is in Order,

however: Patterns can be deceiving things They may lead ou in

fruitful directions, but they may also l ad ou as.tr,ay. The direc-

tions pursued here are fruitful ones. Tncere is an example of a pat-

tern that'leads to a dead end in the discussion of the conjecture on

page 116 of the Appendix.

EXAMPLE 2

Find the remainder when 3
245

is divided by 5. Remember
245

that 3 means the number 3 multiplied by itself 245

times.

Clearly, this number is so large,that it is impossible to write it

out, actually perform the division, and check the remakier. Taking

the first of our three suggestions, let us begin by a king, "What are

we to do?" By the division algorithm (see the Multipl )tcation and Di7 -

vision unit of the Mathematics-Methods Program), there are whole

numbers q and r such that 0.5 r < 5 and
3245

5q r. Our

problem is to determine the nu4er,r. ,

What is known? It may be useful to begin.by looking at some

simpler problems. We can certainly find the numbers q and r for

small powers of 3. This is done in the table on the followingi page.
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ExPonent

-

Associated Number Quotient q, remainder r
when the associated num
beris expreSsed as

'5q + r
Exponential

. Form
(power of 3)

Decimal,Form

r

0

1

2

3

4

5,

6

7

8

1

3

3-2

33

-, 3 4

3
5

6
3

3
7

8
3

-1.

3,

9

0.

27 -

81

243

729

2187

6561-

0

0

1

5

16

48

145

437

1312:

1

3

4

2

1

3

4

2

Notfce the pattern: The remainders 1, 3, 4, and 2 occur in a

regular repetition. Let us see if we can use this pattern to answer'

our original question; i.e., what remainder corresponds to the expo-

nent 245? We observe that in every case illustrated fn the table, .

an exponent wOich is a multiple of+4 corresponds to a reMainde(V 1:

Exponent, (.\

0

4

8

We guess that this continues to be true for higher exponents. If

this 1550, then the exponent 244(= 61 X 4) corresponds to remainder

1. Thus the next exponent, 245, ought to corretpond to remainder.3.

Th4( is in fact the case. This assertion can be Justified, but Justi-

ficationlis not essential to makeOur point, namely, that a careful

stfby of patterns is often helpful in probleM solving.
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In additidn to the use of patterns the main point pf the ex-

ample, we utilized guessing to formulate a hypothesis. Also, in the

creation of the table from which we dedPced a pattern we studied a

number of simpler problems. As with spcialacases. the study of sim-

pler problems may aid problem solving bY providing more information

about the situation and possibly ideas Which may work in the original

problem.

DIRECTIONS':

1. DeterMine the reMainder when 2
89

is divided. by 3_

2: Determine the remainder when 3
197

is divided by 7.

3. Draw a diagrA for the problem-solving protess used in ExaMple.2

imilar to that drawn for Example 1 on page 68.

PART C

DISCUSSION;

Parts A and B contained problems that yOu could understand at once.

They involved only mathematical ideas with which you were already

familiar. In the next examplt we will tonsider another waY, and per-

haps a more typical one, in which problems arise. We begin hot with

a specific problem but rather with a situation ty be studied. In the

course of our study we will formulate and solve some specific prob-

lems

In addition to.giving an instance in-which problems arise in the
1 .

-course of a discussion, this example will illustrate the way in which

appropriate mathematical notation can slmOlify expressions and there-

by facilitate problem solving. One can!view mathematical notation

as a .concise language and a systematic Means of keeping track of in-

formation. We all appreciate how basic 1an understanding of the Lan-

'guage is to communication.

The content selected for this example is "figurate" or "polygon-JL
al" numbers. It exemplifies the sort of material that can be present-

ed at one level in the elementary school (middle grades) and that

offers worthwhile food for thought for More advanced students.
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EXAMP.LE 1

eirle
On: can view the squares of the. counting bers, i.e., 1-, 4, 9, 16,

as those numbers that give th number of dots-in a square

array. It will be very convenient to haVe a notallon that associates

with each counting number n the nth square number. We acjomplish
.._

this by letting Sn .(read."Es sub n"), deqote the n
th square num-

ber. The diagram below illustrates SI 'through

S.

SI = 1 S2 = 4 53 = 9

r
5'

o'

.

S
4

46 S
s

= 25

'What is S7? S
7
7 Draw a diagram for eacfi.

6

;The square arrays can be- partitioned to suggest interesting num-

ber-theoretic relations. One possible partitioning is illustrated

below.

0

4 = J. +03 '

,

9 = I + 3 + 5

,

16 A 1 + 3 + 5 + 7 25 A + 3 + 5 + 7 + 9
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If, this information- is collected in a taye', me have:

AUmber.
-of Deits

on a

,

Side ,

fl

umber '.

9
f Dots

in Array

S
n

, ,

Number of
Subarrays.

,: Resulting
1,
rom Par-
titjon

.

, .

NuMber of
Terms ifl Sum

i,:
.

I + 3 + 54.... + =

3

4.

5

9

16,

25

2

3

4

5

.

2

3
4

. 5

.

. 3

n

If oneexamines this table carefully.and looks for patterns, one

Rotes that in each line the entry under 0 is one less ,than twice

n. Thatis fl = 2rr- 1. Sinte 0 is clef-Fried as theIast term in'

the sum, we conClude that

S
n

= n2 = 1 +/ 5 (2n - 1).'

) /

ThuS, a,studY of square Om ers hes led to an answer to the problem:

Find the sum of the first n .odd numbers.

This question was not po ed initially; but instead arose quite natur-

ally in our discussion, f square numbers,

a

DIRECTIONS:

1. Evaluate the suMs , 1 + 3 + 5 + 7 + 9

1-+ 3 + 5 + 7 + +-19

1 + 3 + 5 + 7 + + 99

2. Use the results of this example to evaluate ,

+ 4 + + 222.
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PART D

DISCUSSION:

In Example3 of Part C, we considered square numbers. There are

other interesting "polygonal" numbers, and in this part we continue.

the discussion a bit further. .Adopting a nOtation similar to-thgt
0

above; we let 7 be the number of dots in a (regular) triangular

array with n dOts on each "leg." We refer to T
n

as the n
th

triangular number. The triangular numbers Ti through 15 are

illustrated..

EXAMPLE 4

." 0 Oi

T1 1 T2 = 3 T3 = 6 T
4

= 10 15 = 15
,

You should determine 7
6

and 17 and illustrate them.

Since the number of dots in the top row of'each triangle is 1,

the number in the next row is 2, the number in the third row is 3,

and so on, we have

and in general

T = 1
1,

T
2

= 1 + 2

T
3

= 1 + 2 +
A

1

n
= 1 + 2 + 3 + + n.

th
Given n, the number of dots in the n triangular array, that is

tn, an be computed in a varjety of ways. We will describe one'of

them and leave'anotherloior you to do [see (2) below].
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First, we use the above.results on square numbers._ We.begin by

observing that the third,triangular array i4 related to the third

square array as shown below.

"

That it, the number of dots in the above array is twice the numbet in

the third triangular array. But the number of dotsvin this array is'

also equal to die number.of dots in the third square array plus 3.

-The 3 arises from the fact that the above figure haetwo dots in each

diagonal spot instead of one as in the'square array. Using a diagtam

we could express this as

or, in symbols, as

2T
3

= S
3

+ 3.

The corresponding figure for the fourth array is,

41.1.

a

. 0

or 2T
4

=
.

S
4

+ 4

If the pattern holds true iil general, then 2Tn . Sn + n. But

Sn .. n2 so we have 2Tn . n2. + n = n(n + 1) or Tn .1-n(n + 1).
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We have sob:fed fhe problem:

Find the sum of the first n counting numberS.

DIRECTIONS:

1. Use the information' dedOced 'abOve about triangular nuMbers to

help in evaluating the sums:

1 +-2 + 3 + + 9

1,-; 2 + 3 + + 19

r + 2 + 3 + + 99.

2. Consider the following table

,

n 1 2 3 4 5

7
n

1 3 6 10 15 21

87
n

8 24 48 80 120 168

Findi another relationship between T
n

and Sn What does it

mean geometrically? (Hint: Consider 2n + 1.)

3. One can define hourglass numbers as in the following figures.

1

S

H
1

= 1 H
2

5 H3 = 1] H
4

= 19
-

Find an expression for the n
th,

hourglass number, H. .How is

H
n

related to I ?
n'
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4. Identify the uses of patterns in the discusion of square num-

bers and triangular numbers.



ACTIVITY 9

PROBLEMS

FOCUS:

In this activity, you will have an opportunity to try to utilfze the

organizational scheme presented in the preceding activity to solve .

some problems on your own.

DISCUSSION':

The problems presented in this activity are not tied directly to

specific subject matter,.and their solutions are not to be found ex-

plicitly anywhere in the unit. However, the topics you have studied

in the unit will be helpful in directing your thinking along produc-

tive lines. It is to be emphasized that you will be operating as an,

amateur mathematician and it is for you to decide which mathematical

tools are to be used in each instance. It may well be that your

approach to a problem will differ from the approach chosen by another.
f

member of the class. You may find it useful to review Activity
0

8

as yOu proceed..

DIRECTIONS:

A selected set of these problems will be assigned by yourinstructor:

Work on them at home or during free moments in the scheduled class. .

Your assignment should be finished by the time the unit is completed.'

The problems of Part B are intended to be more challenging than those

of Part A.

PART A

I. Is a number plus its square always even?

2. Is n(n + + 2) divisible by 2? By 3? By 6?

3. Can the square of each odd number be written in the form

8m + I for some whole number m?
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4. Ignoring ,the initial primes 2 and 3, is the product of each

pair of twin prAmes divisible ty 12?

5. --nd the sum of the squares of the first n Odd numbers.

PART B >

1. There is a row of 1,000 lockers, some open and some closed. A

boy runs down the row and opens every locker. A second boy runs

down the row and beginning with the second locker he shuts every

other locker. A third boy runs down the row and beginning with

the third locker he changes the state of every third locker.

That is, he opens those that'are closed and closes those that

are open. A fourth boy runs down the row and beginning with

locker number 4 he changes the state of every fourth locker.

The process.continues until 1,000 boys have run down the row.

Is the 1,000th locker open or closed? the 764th? [Hint: Do

not work out the entire process by hand. Consider the results

after the first few boys (six or so) have run down the row, and

then look for a pattern.]

,

2. The Pythagorean theoFem says that if z is the hypoteneuse of

a right triangle with legs x and y, then
x2 y2 z2.

Triples of whole n

)

mbers m, n, p such that m2
n2 p2

.s
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are known as Pythagorean triples. Certain. Pythagorean triples

have the property that p = n + 1; For example

2
3, 4, 5 (3

2
+ 4

2
= 5

2
) and 5, 12, 13 (5

2
+ 12

2
= 13).

Find five more such special Pythagorean triples.

3. A group of children decide

to "play store," and they

have items for sale at 1,

2, 3, ..., i.e., at all

prices. Their money, how-

ever, consists of only two

coins, a gleep worth 7t and

a glop worth 23t. A custom-

er can purchase ap item

worth 5t (for example) by

giving 4 gleeps and rèteiv-

ing 1 glop.in change. What

are the prices in cents of all of the items that can be purchased

with gleeps and glops? What if a gleep were worih 6t afld a glop 11111

21?

4. Each letter stands for: one of the digits 0, 1, 2, ..., 9. Find

values of the letters that make the following true:

More

a) .HOCUS

+ pocus

PRESTO

17

0 b) FORTY + TEN + TEN, = SIXTY [Solve independently of (a)_.]

5; Three pirates haye a chest full of gold pieces, which are to,be

'divided between them._ Before the division takes place, one of

the pirates secretly counts the number of pieces and finds that

if he'forms threefequal piles, then one piece is left' over. Not

being a generous man he adds the extra coin to one pile, takes

the pile and leaves. Later the second pirate goes to the chest,
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divides the gold into three piles, and-again finds a piece left

over. He adds the extra piete to one pile, takes it, and leaves

quietly. The third pirate Aes likewise. Still later when the

pirates meet to divide the treasure they find that the number of

coins remaining is evenly divisible into three piles. How many

coins were originally in the chest?
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PROJECT 4

PASCAL'S TRIANGLE

Pascal's triangle is a triangular array of numbers that arises in

several different ways injnathematics. Although it is named after

the French mathematician Blaise Pascal (1623-1662), the table 1os

known to the Moslem philosopher and mathematician Omar Khayyam over

five centuries earlier, and there are references to still earlier

occurrences. The table can be extended indefinitely, and the first

ten rows are reproduced below.

1

1 1

, 1 2 1

1 3 3 1

1 4

1 5 10.A541-05

1 6 15 20 15

1 7 21 35 35 21

1 8 28 56 70 56.

1 9 36, 84 126 126 84

6 i

7. 1

28 8 1

36 9

This triangular array contains a great many number patterns. As

examples, we point out that the tntries on the borders Of the triangle

are all l's (remember that you 'should 4magine the triangle continuing

indefinitely downward) and each entry not on a border is the sUm.of

the two entries in the line just above it to its right and left:

El
1 1
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S.

Also, each entry is the sum of the entries on a diagOnal segment.

For example:

1 + 1 + 1 + 1 = 4

1

3 1

1 4 6 1 4 1

1 5 10 5 1

1 + 2 + 3 + 4 = 10

As a final,example, note the pattern formed by the sum of the entries

in each row:

= 1 = 2
0

1 1 1 + 1 = 2 = 21

1 2

1 3 3

1 4 6

1

1

4 1 1

1 + 2 + 1

I + 3 + 3 + 1

+ 4 + 6 + 4 + 1

=

=

=

4 = 22

8 = ?

? = ?

To check your understanding of these three patterns, ft is subr

gested,that ydu give three more examples of each of them.

a
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'Much of the interest in Pascal's triangle is due to its ubiqui-

tousness. We illustrate its occurrence in an unexpected setting with

the following question:

-Given the set IA, B, C, 0, how many different subsett con

taining one element are there?

How many different subsets containing two elements?

.-How many different subsets containing three elemehts?

How
/
many different subsets containing fpur elements?

Can you qpnnect-this pattern Of numbers with Pascal's triangle?

How?

Be wise, Generaliie!

'PP
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Sectjon III

OPLICATIONS, CONNECTIONS
AND GENERALIZATIONS

This section contains a collection of activi4ties whose common ingre-

client is that they usethe number theory developed in Section I.

There are additional examples, an ind cation of some of'the connec-

'tions between ideas, and some mathematical generalizations. Although

the topics discussed here dolhave mpljcations for elementary school

mathematics, t.g., clock arithmetic, We: not concentrate on these

aspects of the subject. Instead, we See o provide a natural mathe-

matical setting in which several of the topics'discussed earlier ap-

pear as special cases of mere,generalsituations. The reader who

findt his appetite whetted by this bref glimpse into a vast and im-

portant area of mathematics is entouraged to pursue.his interest.

The references in the bibliography that are jdentified as oriented

toward content or extensions'of the mathematics Would be an appropri-

ate starting point.

MAJOR QUESTIONS

I. Identify and discuss a real-world situation different from those

of Activity 10, in which the concept of a remainder class arises

in a natural way.

2. In what ways Is the identificatioh'of a symbol with a remainder

class described in Activity 11 sitililar to the identification of

.the numeral 3 with sets of 3 blociss, 3 balls, 3 pictures, etc.?

\
7,
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3. Do you agrevith the statement "Congruence is a generalization

of ordinary equality"? WhYZ

4. Identify two instances outside of.number theory in which (he

partitioning feature of an equivalence relation is uSefUl.

dlo

TEACHER TEASER

a

Billy was practictng addition by'

adding the number% along each full

week on the calendar. After a

while Billy SAW. the, following pat'-

-"tern.for finIfng tile sum of the

numbers :fn a week: ,'Take the first

day. Add' 3 . Multiply by 7:', Try

14y does it work?
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ACTIVITY 10

REMAINDER CLASSES

/

FOCUS: ,

One of le ways of,viewing prime ahd composite numbers introduced in

Activity 2 is considered further in this activity. The concept of a

remainder class is introduced and real-world occurrences of remainder

classes are discussed.

DfRECTION

Review the definitions of prime and composite numbers and Part A of

Activity 2. Do the folloWing and be prepared to participate in a'

class discussion of number. (4).

1. Certain rectangular and near-rectangular arrays can be formed

from tiles areanged,in horizontal rows of 2:

I ".

What are the stmilar arrays that can be formed frbm tiles ar- ,

ranged in horizontal rows of 1? Of 4? Of 5?

2. The Wrangements of (1) cail be viewed from the standpoint of the

division algorithm. (You recall that the division algdrith0

says that foe.whole numbers a tpd b 0, there exist whofi'

numbers q. and r so that a = bq + r and 8 r <

a) Describe the connection between these arrangements and the

division algorithm.. (You may choose to do parts (b) ana .(c)

before answering this part.)
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What are the possible remainders when any whole number is

divided by 2? By.3? By 4? By 5? Relate your ahswprs to .

rectangular and near-rectangular arrays.

c) What.are the Possible remaindprs when any whole number is

divided by n?

3. Let us now think of selecting some whole.nuMber, sa,y 3, and.

classifying or partitioning the-set,of whole-cdthbers itto dis-
,

joint subsets according to'the remainder after 4ivlsion by 3.

For example, we have-

vel

. - -

,

.. Nember 0 '.1 2 3 4 8 9 10 11

Remainder .

After divi-
sion by

0 1 2T 1 201 2 0 1',_

r

Thus we assign 1, 4, 7, 10, ... to the saMe-set, or remairter,,

class, since :they have the same remaindarlafter division by,3.

We xan proceed similarly with remainders 0 and

Remainder Remainder Class

0 {0, 3, 6, 9, .

1 {1, 4, 7, 10,

2 {2, 5,'8, 11, ...}

Notice.that the'remainder classes are disjoint (i.e., no,number

belongs to More than one remainder cless), and that'they exhatiSt

the whole. numbers (i.e., every whole number belongs to some re-

Mainder class). The impOtance of this comment is that parti-

tioning the whole numbers into remainder classes is in fact an

honest partitioning (see (d) below). ,

a) How many remainder classes are associated witn.division by 3?

b) How many remainder classes are associated with divisfon.by 2?

What are they? Listthem in the same way the remainder clas-

ses for 3 are listed above.
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c) How many emainder classes ace associated with division by 5?

What are they? List them as above.

d),Why is it that we can be sure that every whole number belongs

to some remainder class and no whole mumber belongs to more

1, than one remainder clasO

4. Discuss how the use of a 12-hour clock can be viewed as a use

of remainder'classes.
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PROJECT 5

THE SUM OF THE FIRST N COUNTING NUMBERS

The problem of determining the sum 1 + 2 +. 3 + + p admits of a

variety of solutions. We shall,interpret the problem as askind for

a formula involving n that gives the sum 1.+ 2 + 3 + + h for

each choice of n, and we shall develop a means of guessihg a formu-
,,

la that works. We shall not prove that our guess does in fact always

work; but if one is to have absolute' faith in one's results, such a

proof should be given. This problem is approached differently in

Activity 8.

We begin by studying the sum of an even number of counting num-

bers. For example 1 +.2 + 3 + 4 + 5 + 6 + 7 + 8."' Observe that by

pairing the first and last, the second and second from last, and so

on, one has a set of pairs each of whiich has the same sum.

2 + 3 + 4 + 5 + 6 +

sum 9

sum 9 ,

sum 9

sum 9

In each case the sum is 9 = 8 + 1. There are 4 = -2-such sums so by

multiplication 1 + 2 + + 8 = 9.4 = (8 +

Construct a diagram similar to the one above and find the sums:

1 + 2 + + 14

1 + 2 + + 20

Observe that in each case, for an appropriaie choice of n (i.e.,

n = 14 and n = 20), the following equality holds.

(*) 1 + 2 + + n = (n + 1)1:i .

0
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.
Check this formula. for n = 2, 4, 6, 8, using Pascal's triangle

111/0

(Project 4) or a straightforward computation.

We now have a conjecture for a formula that works when n is

eVen. What.if n is- odd? 1f n is odd, then n - 1 is even, and

we'can- use'the formula for the sum 'of an even number of 'numbers.

Replacing n in the formula 1*) by n - 1 (which is legal since

n - 1 is even), We obtain

1, + 2 + .. + (n'-. 1) = [(n - 1) + 1](
1

" i

A

and therefore

1 + 2 + + (n - 1) +

n
(n - 1),

2

(n - 1)

2

= + 1)

= n((n - 1) + 2)

2

= n(n +2 1) ,

Thatis,_the same fOrmula holds for odd numbers n.

Check this formula for n = 3, 5, 7, 9, using Pascal's triangle

or a straightforward_computation.

TrY to deduce the formula for odd n- usfng the grouping idea

exemplified-in the diagram.

r + 2 +, + + 5 + 6 + + + 9

10

2

sum 10

sum 10

sum 10

sum 10
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ACTIVITY 11

MODULAR ARITHMETIC-I",

FOCUS:

In this activity, definitiOns are made, notation is adopted, and the

set of reMainder classes associated with a counting number is given

a mathematical structure. Selected properties of the resulting mathe-

matical system are investigated.

_DISCUSSION:

Consider again the remainden classes associated tith division by 3.

Remainder Remainder Class

0

1

2

0, 3,

fl, 4,

f2, 5,

6,

7,

8,

9,

10,

11,

...4

...I

We propose an,abstract setting in Which these remainder classes are

viewed as, entities in their own right. Each remainder class is to

be thought of as a sort of number: Thus we introdUce the symbol [0]

to denote the remainder class conSisting of those whole numbers

which ilave 'a remainder 0 when divided by 3. Likewise we introduce

,syMbols. [I] and [2]. We can write,'suggestively: [0] = {0, 3, 6, 9,

...}, [I] = 0, 4, 7, 10, ...};.[2] = f2 5, 8, 11, ...I. To be pre-

cise we should write [0]3, [1]3, and [2]3, nr some similar notation,

to indicate that these are the remainder classes, for division by 3.

We will not do so .unless we wish to distinguish the remainder classes

assoc.iated with division by different counting numbers.

Comment: This might be a good point to give some thought to Major

Nestion 2. It is possible to iptroduce an arithmetic structure into

'this new system, and we proceed to give a definition of addition and

multiplication. We begin with addition, and we first consider an

02
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examPle: The syd6ols [0], [1], and [2] denote the remainder classes

associated with division by 3.

To add [1] and [2] we take any erement of the tessociated rematn,

der class for each; for instance, we might select 7 for [1] and 2 for

[2], and perform ordiOry addition on these numbers.

[0] = f0, 3, 6, 9, ...1

[I] = 4, 7, la,
1

[2] = j2, 5, 8, 11, ..1

7 +12 = 9

The result is 9, and we define the sum of [1] and [2] to be the

,remainder class to which 9 belongs. Since 9 belOngs to [0], we de-

fine the sum Of [1] and [2] to be [0].

would be convenient to have a. symbol to denote addition of

rem classes as + denotes addftion of.ordinary numbers. To

keep the nota.tion to a minimum, we will continue.to use '4? even

though we aw. not adding ordinary humbers. The,multiple use of +

is common in mathemapcs and one has to interpret:the meaning of the

symbol from the coritex.t. Thus, if we write 1 +. 2-we'mean ordinary

addition; and if we write [1] + [2] then we mean addition of "remain-

der classes. With this convention regarding the use of the symbol.'

+, We can write [I] + [2] . [0].

Continuing as above, one can.construct an addition table for'the

remainder claseS associated with divisionby 3.

[0] [1] [2]

[0] [0] [1] [2]

[1.] [1] [2] [0]

[2] [2] [0] [1]

We fe'ive,it for the reader to check that'the sum of [1] and [2]

is we)) defined,ln the sense' that this sum is independent of the par-

ticularfrepresentatives selected (7 for [1] and 2 for [2] above).

Such a Check might consit of trying several different eXamples. It
-
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.
is true in general that the sums are independent of the representa-

tives seleCted,

An,appropriate definition of multiplication can be given along

similarnines. Thus, to define the product bf [0.] and [2] we select

any pair of representatives, one from each remainder class, multiply

them: togiether and note the remaibder class of the product. For in-

stance, we might'select 9 from [0] and 8 from [2], WhiCh leads to

9.X 8.. 72. Since 72 is contained in'[0] we define the product of

[0] ahd [2] to be [01. Extending the use of thecYmbol x as wg.did

for + 'above, we will write [0] x [2] = [0]. The multiplication

-table for the remainder classes astociated wtth division by 3 is

given below.

[0] [1] [2].

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1],

'DIRECTIONS:

1. Complete'the followtng aattion and multiplicat'ion tables.

1 04
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[04 [1] [24 .[34 [44

[0]

[1]

[24

[34

[44

[076 [1,4 [24 [376 [476 [ 76

[0]6

[14

[2] 6

[336

[476

[5i6

2.° The abstract systems constructed in this activi.ty have some, but

not all, of the properties of the system of ordinary whole num-,

bers. In this exercise we shall briefly'explore this comparison.

a) Is there a number in the system [0]4,. [I]4. [2]4, [3]1 that

behaves as does 0 under addition in the ordinary whole num-
.

bers?

b) Is there a number in the system of part (a) that behaves as

does I under multiplication in'the ordinary whole numbersr
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In the ordinary whole numbers, if a product of two numbers.is

zero, .then at least one of the numbers must be zero. Is this

assertion true.in the system of Art (a)?

d) Answer each of the above questions for the system [Us, [1] ,

[24, [3] , [4]5.

3. It is important that addition of remainder classes is well de-

fined.in the Sense that the sum is independent of the particular

representatives selected. For example, in the discuSsion'of

adding [1]3 and [2]3 given above, we selected 7 for and,2

for [2]3. We would have obtained the same 'result had we,select-

ed 4 for [1]3 and 8 for [2]3.

a) Select two different sets of representatives for each ofthe

pdIrs of remainder classes in the following sums and che6k

that the sums are well defined.

[0]3 + [2]3 [1)4 + [3]4 [2]5 + [44

b) Proceed as in (a) tO check that the following products are\

Well defined.

[1]3'x [2]3 [2]4 x [0]4 [1] x [44

TEACHER TEASER

The product of a number mul-

tiplied by itself it called

a square number. Billy says

that 3688 is 'a square number.

Sally says it canq be be-

cause its one's d4git is an

8. Is either perton right?
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PROJECT 6

CASTING OUT NtINES

Although you may think of modular arithmetic as a "modern" subject,

in fact it forms the basis for a. method of (partially) checking arith-

metic computations that goes back at least to the sixteenth century..

This method is known .as "casting out nines" and is-sometimes included .

in elementary textbooks.

The casting-out-nines technique rests on the fact that a count-

ing number is congruent-mod 9 to the sum of its digits. This asser-

tion, which is not justified here, can be proved using an argument

similar tb the one you used in Activity 4./o show that a counting

number is divisible by 9 if,and only,if the sum of its digits l di-

visible by 9.

We illustrate the technique with examples;

373 3 + 7 + 3 e 4 mod 9 A

+ 486 4 + 8 + 6 s 0 mod 9 j 4 + 0 5 4 MOd 9

859 43 + 5 + 9 s 4 mod 9

Since the remainder class of 373 mod 9 (i.e., 4) plus the remainder

class of 486 mod 9 (i.e., 0) is equal to the remainder class of 859

mod 9 (i,e 4), the test shows that the addition could be correct.

(Sep the note at the end of the discussion.)

187 1 + 8 + 7 s 7 mod 9 A

x 53 5 + s' 8 mod 9 J 8 x 7 . 56 2, mod 9

561

935

9911 9 + 9 + + 1 a 2 mod 9

The product of the remainder classes of the factorv i equal to the

rema6der class of the product, and consequently the computation is

not show'n to be false.
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On the other hand, the erroneous addttlqp

32 3 + 2 3 5 mod 9
- "

87 8 + 7 s 6 mod 9 5 + 6-+ 3 5 mod 9

+ 21 2 + 1 s 3 mod 9

142 1 + 4 + 2 s 7 mod 9

dv:

is shown to be false by fhe observation that the sum of the remainder
"",

classes (mod 9) of the addends 15 not equal to the,remainder class of

the (purported) sum.
.

Notice that the test is a negative test; i.e., the te'st can be

used to prove that a computation is false. However, it can never be,

used to gove that a computation is correct'. If casting out,nines

leads to consistent results, then we have more confidence in our cal-

culatiory, but we are not certain that they are true. If ,casting out

nines lAads to inconsistent results, then we knok that the computa-

tion is false.

Note: Each of these tests uses the mathematical fact that).

if a 3 b mod 9 and c-11 d mod 9,, then

a +cz,b+dmod 9

and a:c b.d mod 9

1. Check the following computations using casting out nines:'.1

481 + 653 + 98 + 124 0 1356

+ p6 4.), 86 0 157 ,

37 x 255 0 9535 " )
17 x 41 .*0 697

58 x 74 b 4382

Is each of the answers correct?

2. Make an example of .a,addition where the answer is incorrect and

yet casling out nines does not detect the error,

CHALLENGE PROBLEM
A ,

ActiVities 10 anti 11 provide the mathematical ba,ckgro6nd necesSary to

justify the assertion of the Note. Do so,
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ACTIVITY 12

MODULAR ARITHMETIC I : CONGRUENCES, EQUIVALEhCE RELATIONS, AND
APPLICATIONS

FOCUS:

In this attivity, the'concepts presented in Actiyities 10 and 1:1 are

considered further-and the notpn.of congruence is introduced. The

important idea of an equivalence relation isrdiscussed, an- d congru-

ence is sbown to be an equivaience'relation bn the whole numbers.

This activity consists of three parts:
1

PART A: Notation

PART B: Congruence as an Equivalence Relation 7

PART C: Applications-.

PART A:: Notation

DISCUSSION.:

The notions of remainder glass and modular arithmetic that were intro-

duced in the preceding activities in this section are interesting

mathematical ideas'in tneir own right, HoWever, they'also provide an

appropriate setting in which to view a number of facts and problems.

Here we will introduce some notatton-and define congruence, discuss

congruence from the standpoint of equivalence relations, and give

some applications of the ideas of.this section. We start with nota-

tiont

In Activity 11 the symbolf [0]3[1]3,, and [2]3 were introduced

, to denote the remainder classes associated with division by 3. Let

us now considerhow one'could determine whether two numbers dre mem-.
. _

bers of the.same remainder class. The result is the following:

Two whole numbers. a andj h belong to the same remainder .

class:41f and only if 3. divides (b - a).

r

Observe that thereAre twO-parts to this assertion. First, if a

and b belong:to the same remairr clats, then -31(b - a); and,
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seCond il(b - then:.a and b belong to the s4me remainder

class Tifiesult can be verified by 'using the fact fr.* the divi-

sion al7ithm that-each whole number can be represented 4s 3q

Where 'K.\ 0 -1 or 2..

Usirig\this result we conclude.that 4 and 28 belong to the saMe

remairiber,\ ass. -Indeed., 28 7 4 = 24, and 3 divides 24. Slnce

belongs tO 113 it follows that 28 does also. LikeWise, 2 4nd 14

belorigto [2]3", and4and 15 belong totOr.

DEFINITION f

Let p be a counting nuMber. Two whole numbers a' and

b aro said to be congruent modulo p if 0 divides

b - a, that is, if a and b are in tbe same remainder

class a soctated with division by p. If a is congru-

ent to b módulo p, We write a s b(mod

\

E 8(mod 5),

DIRECTIONS:

EXAMPLES

s 14(mod 3), 8 s 14(mod 6)

1. Let S = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. Determine

which elements of'S are congruent to 0 modulo 2. To I modulo3?'

To 0 modulo 5? To 1 modulo 4? To 2 modulo 6?

2. The last two congruences in the examples immediately preceding

the directions illustrate thefollbwing fact:,If p and q are

counting numbers and p divtdes q, then a s b(mod q) im-

plies that a s b(mod p). Give three more examples of this fact.

3. Give as precise an argument as you can to justify the f'act

asserted in exercise 2.
it

4. If a s b(mod p) and b s.c(mod p), then a s c(mod p). This

assertion can be justified in detail using some results of

Activity 1. Discuss why it should be true and provide a precise

argument if you can.
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-
Does there eicist a whole nUmber x s,uch that 2x s 3(aod 6)?

Justify yout answer.

6. If n is.a counting number, determine if 3n - 1 can ever be

the square of a counting numbet%. Hint: Use congruenCes.
Th7

-7. Is there a counting number n such that 11 divides 4.(d2 + 1)?
,

8. Discuss the 24-hour day and the 12-hour clock froM the stand-

point of congruence modulo 12.

PART B: Congruence as an Equivalence Relation

DISCUSSION:

If we constder the statement 5 s 17(Mod 6), it is clear thatthe im-

plication is that 5 is somehow related to 17. The precise statement

is, of course; that 6 divides 17 - 5,or that 17 equals 5 plus 'some

multiple of 6./wIn this very intuitive sense we will refer to con-

grUence modulo p as a relation. The concept can be made much more

precise. .
Since 0 is,contained in the remainder class [0] for every

counting number p, it follows that i E a(mod p) for every whole

number a. Likewise, if a E b(mod p), then b E a(mod p). The

first of these isknown as the reflexive property of the relation E

and the second is known as the. symmetric property of that relation.

The transitive property is d&cribed in the assertion of exercise 4

above. A relation that is retlexive,, symmetric, and transitive is

called an equivalence relation.Thus, congruence is an example pf

an equivalence relation.

The relation concept is a very general one and congruence is

only one example. A somewhat more general framework in which to view

congruence is the following: We have a set U and a correspondence

R whicrrelates each element of ,U with, other elements of U.

SuppOe that the correspondence, R is such that for every pair u

and v, of elements of .U, either u is related to v by R or it

is not. In the example of congruence modulo p, the set U is the
,
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set of whole numbers, and the relation is that of conpruence; for
,

.every pair u
to

and v of whole numbers, either u v(mod p) or

u v(mod p). (Relations are discussed in more detail-in Section III
0.

of the,Graphs upitof the Mathematicsliediods Program.)

,DIRECTIONS:

Consider each of the following relations 'and determine how it fits
,

into the framework described above. Identify those that are equivaT

lence relatidns, i.e., are refjexive, symMetric, and transitive.
,

1. Ordinary equality on the set of whole numbers.

2. ;The relation "less than"fdOned,on the set of counting numbers.

3. The relation "divideS" on the set of counikng numbers (a As

related to b if a dividv b).

4. The relation "is the brother of" defined on a set of chiidren..

5; The relation 'Pis the son of" defined on the audtence at a con-
,

cert.

11111
6. The relation ,-- defined on ordered pairs,of counting numbers

a where the relation A.' isVined by (a,b) -, (c,d) if ad = bc.

,..

7. Jhe relation "has the same prime factors as" defined on the set

of..counting numbers.

PART C Appl ications

DISCUSSION:,

It is well known'that equations of the form ax = b ocdur frequently

in the,applications,of elementary mathematics. Likewise, there are

problems arising outside of mathematics:that lead to congruences of

the.form ax s b(mod p). Here a, .b, and p are assumed known and

the problem is to find a value of x for which the congruence,is '

true. Unfoftunately, even these SAMple congruences 'need not hve

any solutiOns. For example, the congruence 2x s 1(mod.4) has no

whOle-number solutions. Iiideed, for every whole number x the num-'

ber 2x is even and, consequently, AS either evenly,diwisible. by 4
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[i.e., 2x a 0(mod 4)], or else i\t .has remainder 2 when dlvid

111/1

4 [2x E 2(m0d 4)]. (See exercise 5 of Part B for another e ampl

The following example illustrates, how congruences may arise.

EXAMPLE

A box of candy bars is'such that

. when it is divided equally among

three children there,are two bars

left olier, and when it As divided

equally among five children there

are four bars left ovdr. What is

the least number of baes the box

can contain?'

We proceed by welting the

problem in mathematical form. Let

-x denote the unknown number of

bars,in the box. Then the conditions described in,the problem are

x a 2(mod 3) and- x E 4(mod 5). That is, there are whole numbers

11111 m 'and n such that i - 2 = 3m and x - 4 = 5n or, expressing

these facts sOMewhat differently, x =f3m + 2, and x = 5n + 4. Con-

sider the two sets

M = {whole numbers k Such that k = 3m + 2, m = 0, 1, 2, 3, ...I

= {2, 5, 8,1L, 14, ...},

N = {whole numbers lc' such that k = 5n +

= {4, 9, 14, 19, ...}.

The problem asks for the smallest number that is both in M and in

N. This number is 14. Thus, the smallest number of bars that the

box could contain is 14.

There are many applications of congruences to checking computa-

tions (see Project 6), to calendar and chronology problems (see exer-
.

cise '4, Activity 10), to the schedOing of tournaments, and so on.

.Several of the references cited in the bibliography discuss these
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applications. In particular, the book, Invitation to Number Theory,

by Oystein Ore sontains a chapter on applications of congruences.

D1RECYIONS:

1. A recipe for a large batch of

cookies calls for 5 eggs.

; Before baking ieveral 4atches

of cookies; there are a num-

ber of cartons of a dozen eggs

and 3 additional eggs. After'

baking there is one egg left

over. How many eggs were

there to begin with?

A

1

2. In the set ofordinary real numbers the number is that number
1

which when multiplied by 2 gives'1. Thenumber -2- in mod 5

arithmetic is defined similarly.

a) Compute
1 1 1 T1 1

T, 12-3 in mod 5 arithmetic.

b):A student says 114 = I- in mod 5 arithmetic just as in regu-

lar arithmetic." What did he mean, and was he correct?

3. Find a.couniing number x which satisfies both of the congru-

ences.- x s 2(mod 5) and 3x s 1(mod 8).

4. A woman cashed a check at a

bank and the teller mistook

the number of cents for the

number of dollars and vice

versa. ,After purchasing an

'item for 68 cents the woman

discovered the error, and at

that time she had exactly

twice as pUch money as the

value of the original check. 'Find one possible Value for the

check.

1 4
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ACT4VITY 13

11111 THE EUCLIDEAN ALGORITHM AND OTHER SELECTED TOPICS

,
tp solve a problem. Frequently 4n algorithm'to perform an operatioh

(such as the multiplication of two three-digit numbers) consists of

111/0 the step:by-step application of a number of simpler operations (in

this case, a number of multiplications by one-digiCnumbers followed

by an addition). There is an algorithm, known as the EUclidean a go-
.

rithm,.to determine the greatest cOmmon factor,of two numbers.

algorithm to compute 'the GCF of two counting numbers is useful since

Pie factors of either number may not be at all Clear from inspection.

"',,.* For examPle, it might be quite laborious to determine Wad-hod tech-
, , 9

niques that the GCF of 867,and 1802 is 17.

The Euclidean 'algorithm for cletermining the GCF of two numbers

is based.on the repeated application of the 'familiar division algo-'

rithm. Recall that if a and b. are counting numbers; then there

are whole numbers q and r (usually knoWn as-the quotient and

remainder), 0 r < b, such that

FOCUS:

In this activity, the Euclidean algorithm and some oS its consequences

and applications are presented.

PART A

DISCUSSION:

The Multiplication of 357 by 231 can be considered as am operation on

the pair 357,. 231, and there is a well-known method for computing the

product 357 x 231. This method is sometimes referred to as the multi-

plication algorithm. An algorithm is simply a well-defined procedure

a = qb + r.-

40,
We illustrate the algorithm by an example, the problem of deter-

mining the GCF of 867'and 1802 posed above. We begin by using the

111/1
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division algorithm to write 1802 = 2867 + 68. Since the GCF of

867 and 1802 (hereafter referred to in this example simply as GCF)

must divide 1804,,, it divides both sides of the equation 1802 = 2.867 +

68; and sinceAt divides 867, it must divide 68 (review Activity 1 if

you are uncertain of the reasons for this). Consequently, the GCF

must divide. 1,802, 867,, and'68.

Agatp, using the division al-.

gorithm, we can write 867 = 12-68

+ 51. (easoning as above, since
s.

the GCF divides 867, it must'di-

vide 12.68 + 51 and since it di-

vides 68, it must divide 51.

Therefore, the GCF dimides 1802,

867, 68, and 51.

Continuing, We can write

68 = 51 + 17, and since the GCF divides 68 and 51, Lt must divide 17.

At this point we know that the GCF divides 1802, 867, 68, 51, and 17.

Next we write 51 = 3-17 and we notelhat in this,applic(ition of

the division algorithm there is a zero remainder. This is the signal 11111

that our work is finished and that the GCF of 1802 and 867 is 17.

Indeed,'

51,= 3.17

so. 68 = 3.17 + 17 = 4.17

867 =.12-68 + 51 = 12.4.17 + 3.17 = 51.17.

and, 1802 = 2.867 + 68 = 2.51.17 + 4.17 = 1p6.17.

Thus 1711802 and 171867. Our work also shows that no larger counting

number divides both 1802 and 867. We conclude that 17 is the GCF of

1802 .and 867.

DIRECTIONq:

1. Find the GCF of the following pairs of numbers:

a) 222, 98 c) 1536, 244

b) 748, 132
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2: Find the LCM of 5436 and 2618. (Hint: Recall Exercise 4, Part

111/1

B, Activity 6.)

3. A student determined the GCF of 1802 and 867 by writing the
.

,

,sequence of-divisions shown-below beqinning at the right
..,

,,.

3 1 12 2

17 1-17 761-3 ITO )73-0-27

51_
0

51

17

816,, 1734

51 68

a) Explain how the algorithm works.

Work exercises (10. and (lc) using this algorithm.
_

e

PART B

DISCUSSION:

Consider the problem of-finding the GCF of 264 and 150. Ustng ttle

Euclidean algor)thm we have

i) 264 = 150 + 114.

Hi) 150 = 114 + 36,

iii) 114 = 3.36 + 6,

36' = 6,

and consequently the GCFof 264 4nd 150 'I's 6. Beginning with line

(iii) of this set of equatfons, we can write

6-7114 - 3.36.

Next, using ltne (ii) to write 36 -41150 - 114, we can write

6 = 114 - 3(150 -

. 4114 - 3.150.

Finally, using line (i) to write 114 = 264 - '150, we have

6 = 4(264 - 150) - 3.150

//

117

or 6 . 4.264 - 7.150.
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This shows that the tGrof 264 and 150, namely 6, can be written as

6 = x.264 + y.150,

'where x and y are integers. This is a special case of the follow,

ing fact.

Let a rand b be any counting numbers. Then there are

integers x and y such that

GCF of. a and b = x.a + y.b.

Moreover, the GCF of a and .6 is the smallest counting

number that can be expressed in this form, that is, the

smallest counting number that can be,written in the form

x.a + y.b, where x and y ar'e'integers.

Counting numbers a and b are said to be relatively prime if . ,

the GCF of a and b is 1. thus, 3 apd46 arelatively prime,

but 6 and 16 are not. The GCF of,6 and 16" is 2. .

DIRECTIONS:

1. Write the GCF of each of the following pairs of coun&unumbers Allii

in the foril x.a 4 ty.b. Vir

a) a = 9, b = 30 c) a = 9, b = 25

b) a = 8, l'y= 28 d) a . b = 42

.2. Justify the followihg statement. If a And b are relatively

; prime counting numbers, then there are integers x and y such

that x.a + y.b = 1. iv

3. Decide which of the following pairs of couhting numbers are

relatively prime. FOr each pair that is relatively prime, find,

integers x and y such that x.a + y:b =

a) a = 9, b = 20 cj'a . 40' '

b) a-= 9, b = 60' d) a= 6, b = 35
,.9

4. Is the relation "is relatively p.rime to" an equivalence relation?,

If so, justify your claim; if not, find an example that illus-

trates that one of the properties of an equivalence relation

fails to hold.
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Appendix

AN EXAMPLE OF PROBLEM SOLVING

'This appendix presents the solution of a problem comparable in diffi-

culty to some of those in Part B cif Activity 9, using the organiza-

tional scheme introduced in Activity 8. This example might be read

profitably before working the problems of Activity 9. Remember that

mathematics should be read with paper and pencil handy. You will

peed'to pause to cheCk calculations ancrto convince yourself that
r:

assertion's made in the text are valid.

11110 DISCUSSION:

Here we consider a somewhat more difficult probiem of the same general

type as those of Pa'.rt B of Activity 9. The Approach outlf.ried here

.again involves looking at special cases, searching for Patterns, and

carefully examining the situation in'terms of what we know about num-

bers. This example was suggested by a problem in Mathematical Discov-

ery, Vol. II, by Polya (problem 15.48, page 166).

BACKGROUND FOR.THE PROBLEM

We have considered in Activity' 8 several examples of sets of numbers

that,can be represented by arraysAof dots of a particular geometric

form. We continue this idea and introduce the concept of a trapezoid7

al number. As you would -expect, a trapezoidal nuMber is one that can

be associated with a trapezoidal array'of dots. ,the arrays of inter-

est to us are regular ones, that is, arrays in which the.number of

dots in any row is one more (or one fewer) than the number in adjacent
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rows. For example, 9 is a trapezoidal number since there are 9 dots

in the array,

in the array

JI e

. .

of 9 tdots in a line

We notice that there are,also 9 dots

and in the (someWhat degenerate) array

In fact, if we

admit arrays of this last,type, then it is clear that every number is

trapezoidal. However, it is also clear that some numbers hive sever7

al repreSentations using trapezoidal.arrays while others:, 4 for

example, have only one representation. Thts leads us tO the basic

problem to be studied here.

THE PROBLEM

How many different trapezoidal arrays does each,courcting

number have?

A SOLUTION OF THE PROBLEK

We begin by trying to understand, the question more precisely. First,

what is meant, by 4d1fferent" arrays?

Taking, for example,, arrays for the num-

ber 9, should the array

be considered as different from

"

no

S.



Both arrays are,trapezoidal. If we view these two,arrays as differ-

1111/

ent, then, since there are infinitely many orientations for the basic

.,

array we would conclude that there.are infinitely

many different arrays for each number. This does not appear to be an

interest4g answer to the question and we drop the idea of distin-
,

guishing between arrays on the basis of orientation. Instead we look

for a different way of viewing arrays. A common characteristic of

all the arrays discussed just above is that there are 5 dots in one

row and 4 in another row, 5 + 4 = 9% This observation provides a

viewpoint from which it is meaningful to consider all arrays with 5

dots in one row and 4 in another as equivalent arrays. It also gener-

alizes to the other arrays for the number 9, namely 9 = 2 + 3 + 4

(all arrays with 2 dots, 3 dots and 4 dotS are considered equivalent)

fm4minnd 9 = 9 (all arrays with nine dots in a line are considered equiva-

lent). It makes sense to identify a trapezoidal array for the number

. n with a sequence of consecutive numbers whose sum is n. The read-

er should consider the geometric aspects of this identification. ,

IIIILet n be a counting number and define Z(n) to be tHe number.of

different ways in which n can be written as a sum Of consecUtive

counting numbers. For the first 10 counting numbers, we have the

f011owing diagram, which displays the trapezoidal arrays and the

values Z(n).

n = 1

n = 2 .

n = 3

n = 4

n = 5

zto

Z(2) = 1

1(3) 2,

1(4) 1

1(5) .= 2
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n 6

n 7

n 8

n . 9

n 10

'r

'A

Z(9) = 3

Data for n = 1, 2, ... 40 are.summartzed in Table A.

TABLE A

1.
ZOO 2

Z(n)

1

.2

3

4

5

6

7

8

10

1

1

2

1

2

2

2

3

2
4

2(n) Z(n)

11 2 21 4

12 2 22 2

13 2 23

14 2 24 2

4 25 3

16 1 26 2

17 2 27 4

18 3 28 2

19 2 29 2

20 2 30 4

Z(n)

31

32

33

34-

35

.36

37

38

39

40

2

4

2

4

2

2

4

2

The reader is 'invited to'check several of these- entries..
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.

Our' goal is to find a theans for determining it). for an arbi-

11110

trary counting.number n. We begin by examining theabpve'data in

detafk i.e.,' we begin by using what we know; Although our goal is

to determine, Z(n) for a given n, it is useful to look at the ''','

values (n) and see if we can deduce a relation between these ),

values and ihe,associated values of' n. This technique, i.e., the

comparison Of input A and output 1(n), for specific values of ''n,

frequently-providet useful 4A-Ocrmation. First of all, consider the

WS for' which Z(n) = 1. We have n =-1, 2,.4, 8, 16, 32., That isi

for the range of- n studied here, Z(n) = 1 in exactly those cases

in which n is a pader of 1. (Remember 20 = 1.) ,At this point we
-

would be justified in makirig,Ou'r first conjecture (or guess, or hY-'

e.l.
pothesis):

Conjecture 1:

If n is a 0ower of 2,, then Z(n).7 1. That ts, for

every whole number ki V2k) = 1.

'To keep tr'ack of progress, it is suggested that the n's which are

powers of Z be crossed Out..on Table A.

Tnere are many valuet of n for:which Z(n) = 2, to let Us by-
./

pass them for a.moment and continue by looking at the values'of n

for Which Z(n) == 3 and 4.

Z(n) = '3 for., n = 9, 18, 25, 36

and

Z(n1 7 4 'for n = 15:21, 27, 30, 33, 35:39.

It,is not easy to discern a pattern in either case. However, we-do

note that 1(n) = 3 for n = 9, for n,= 18 = 2.9, arid for n = 36

= 218 = 1.2.9. Also Z(n)= 4 for n = 15 and:' n = 30 = 2.15.

With this clue we go aack to the'main table and we note tha

every number n, for which both n and 2n are included in the

table, we have Z(2n) =-Z(n). We are ready to make another gUess.

11110
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Conjecture 2:'
4.

For every value of n, Z(2n) = Z(n).

The importance of this conjecturc,is that if we know hoW to determine

Z(3), then Z(6), 1(12), and Z(24) .can also be determined; if we

can determine Z(5) then Z(10), Z(20), and 440). can also be deter-

mined; if Z(7) can be determined, then so can Z(14) and,, Z(28),

.and so on. It is suggested that those values of n for.which Z(n)

can be determined front values Of Z(n) for smaller' n usingthe con-

jecture, i.e., n = 6; 12, 24; 10, 20, 40; 14, 28; ..., be crossed out

on Table A. 1

Which counting numbers remain? Only those for which the associ-

ated value of Z cannot be determined by knowing the value Z(n).

for a smaller number n. Therefore, if one accepts Conjectures 1 and

,2, then only the data in the much shortened-Table B remain to be ex-

plained.

TABLE B

n
/

*

3

*

5

*

7 9

*

11

*

13 15

,*

17

7*

19 21, 23 25 27-29

* *

31 33 35

*

37 39

Z(n) 2 2 3 2 242 2 4 2 3 4 2 2 2- 4

It is now time to ask how our knowledge of the counting numbers

can be applied to aid in further understanding the situation. The

sequence of n's remaining is a sequence of odd numbers, and it is

natural to look for ways of subdividing the class. One natural way

is to divide it into primes and composites. Each prime number is

dencited by an asterisk in Table B. We observe that every prime num-

ber n has Z(n) = 2. On this basis we formulate another hypothesis.
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ConjectUre 3

If n is an odd prime, then Z(n) =

Let us review again what We know in light of this conjecture. We re-

call from Activity 2 that one of the characteristics of a prime num-

ber is that it has exactly two factors. Therefore, another way of

viewing Conjecture 3 is that if n is an odd prime, then Z(n) gives

the number of factors.

Let us digress for a moment and display he arrays for n if it is

an odd prime. If n is odd, then n = 2m + 1 for some whole number

m. Thus n = m + (m + 1), and n has been written as the sum of

two consecutive counting numbers. The othersarray is the trivial one

with n dots.

p .d ots
m + 1

. m * (m + 1) = n

Notice that this remark applies to all odd numbers whether

primes or not. We conclude that every odd number greater than 1 has

at least two arrays, a conclusion which is conSistent with Conjecture

1. Why?

A We proceed by following up the idea which led 6 Conjecture 3.
,

,

In that discussion our concern was with prime numbers. However, every

counting number can be written as a product of prime numbers (the re-

sults of Activity 3 are included in "what we know"), and.this appears
c,c

to be a connection worth exploiting. Write the prime factorization

of each n in the empty center row of Table B. The result, omitting

rimes, is,reproduced on the next page in Table C.

111(
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TABLE C

, n . 9 15 21 25 27 33 35 39

Prime Factor-
ization.

3.3 3.5 3.7 5.5 3.3.3

_

.3.11 5.7, 3.13

Z(n) 3 443
We observe that each n that can be written as a product of two

distinct 6dd primes -has Z(n) = 4. Taking this together with Conjec-

ture 3 we might propose

Cadecture:

If n = p1p2...pk where pl, p2, pk

are distinct odd primes, then Z(n) = 2k.

Using the data of Table A we see that this conjecture,checks when

k = 1 and k = 2 and n 40, that is for numbers less than or III/1

equal to 40 that have either one or two distinct odd prime factors.

In other.words, it checks for all the data contained in Table A. One,

might claim that this is a sufficient check and stop. However, it

pays to tie Iceptical4apd to try anothercase: Let n = 105 = 3.5.7.

In this case' k = 3 and-our conjecture is

However, we have

105 = 105

= 52 + 53

Z(105)'= 6.

= 34 + 35 + 36

= 19 + 20 + 21 .+-22 + 23

= 15 + 16 + 17 + 18 + 19 + 20

= 12 + 13 + 14 + I5 + 16 + 17 + 18 /

= 6 + 7 + 8 + 9 + 10 + 11 +'12 + 13 +.14 + 15

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14.
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That is, Z(105) = 8; consequently this last conjecture is ac-

11111

, tually false even though it held for all the data in Table A. This

points out the need for mathematical justification or proof. Propos,

.' als that appear to.be reasonable, and that tqay in fact give correct

results in mau.special cases, may nevertheless be false. They do

not:give correct 'resUltS in'general, i.e. iri all cases. No number of

examples or special cases can ever prove that an assertion is true,

while a single example (as above) may prove it to be false. Examples

that prove an assertion to be false are ,knowri as counterexamples and

play a very important role in mathematical problem solving.

The failure of this last conjecture leads us to believe that

looking for a method of COmputing Z(n) dtrectly.in terms of the num-

ber of prime factors of n is not fruitful. Rather than,give up com-
_

pletely,what appears to be a promising idea, we modify it slightly ,

and consider the number of divisors of n. If .n is the product of
,

distinct odd primes, then all div.isor's of n are the products,of

the prime factors. Data-can be obtained from Table C. We include

data for the number 105 which proved to be helpful'as a test case

11111just above.

n 15 21 33 35 39 105

Prime
Factors

3, 5 3, 7 3, 11 5, 7 3, 13 3, 5, 7

Divisors
1,

5,

3

15

1,63
7, 21

1,

11,

3

33

1,

7,

5

35
1,

13,
3

39
1, 3,

15, 21,
5. 7
35, 105

Number of
Divisors

4 4 4 4

Z(n) 4 4 4, 4 4 8

This data provides evidence for another Conjecture.
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Conjecture 4:

AY

If n is the product of distinct odd primes,'

then 7(n) equals the'number of divisors of

n (including l'and n).

The only remaining cases from Table A to ,be considered are those

in which n is the product of odd primes, not all distinct. Rele-

vant data taken from Table A and two additional cases are given below.

n 9 25 27 45 75

Prime Fac-
torization

3.3 5.5 3-3-3 3.3-5 3-5.5

-Z(n) 3 4 6 6 ,

We invite the reader to find the arrays that show that 2(45) = 6.,

: Taking a cue from the argument leading to Conjecture 4, we aug-

ment this table by noting the divisors and the number of Aivisors4,

.

9 25 27 45 75

,

Divisors 1, 3, 9 1,, 5, 25
91'2; 91,,l, 4 115: 32;,5i5

Number of
Divisors

3 3 4 6 '6

Thus, the fact that n is a product of distinct odd primes does

not seem to be important in Co'njecture 4. That conjecture can be

modified to take this observation into account.
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Conjecture 5:

4 .

If n is A,product of odd primes, then Z(n)- is

equai to the nuMber of divisors of n (including

1 and n),

for

Let us now summarize our work. Our problem

is to determine Z(n) for An arbitrary

counting number n. We know that n can be

written as a product of primes. If it is a

power of 2, then the first of our conjectures

applies and we propose that Z(2k) = 1.

Powers of the prime 2 in the factorization

oi n turn Jaut to be unimportant in the de-

termination of Z(n). Remember Z(2n) = Z(n)

every counting number n .is one of our conjectures. ,44 n''is a,

product of odd primes, then Conjecture 5 tells how Z(n) is to be

determined. Let us collect all of this into one final conjecture.

IlkInal Conjecture:

Given any whole number .n, Z(n) is equal to the

number of odd divisors of p, including 1 (and ,

n ,if n is odd).

This conjecture is actually true and can be shown to be so by a care-

ful mathematical argument.
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NUMBER THEORY

" INSTRUCTOR'S -MANUAL

INTRODUCTION:

This unit; like other units of the Mathematics-Methods Program, in-

volves one as an adult learner in activities which-ha'Ve.implications

for teaching-children. :By working with concepts that children might

learn, by studying the problem-solving processes that children mig t
,

Use,, ond by doing activities ttiat might be modified for use with

children, .one grows iri understanding and enjoyMent of mathemati

The objective is to increase both students' competence and thei

sire to teach mathematics to children.

The "Introduction tojhe Number Theory Unit" which appe

pp. 1-4 of the unit des6ribeS the content of the unit and expl

the spirit in whfch the unit was written. It would be a good id

for the instructor to become acquainted with this'introduction in the

procesof,deciding,whether and how to use the unit.

THE CONTENT OF THE UNIT:

As is noted in the Introduction, the unit contains six major parts.

7hey are (1) an overview which focuses on the hitorital development

of number theory and the role of number theory in:the elementary

classroom (pp. 7-13); (2) a list of terms, definitions, and notations

used in the unitk (3) Section I which presents the basic concepts of

divisibility, primescomposites, and factorization; (4)'Sectign 11,

concerned with problem solving, which explores a number of easily

understood but challenging problems, presents an organizational ,

scheme for attacking problems, and provides opportunities for solving

problems of vaHous difficulties; (5) Section III, on applications,

1



which illustrates how some of theideas introduced eatlier can be ex-,

tended and applied; and (6) an Appendix which presentS-'enother

ple of problem solving. At the end of the unit, a subslaptial bibli-

ography can be found,

TIMETABLE SUGGESTIONS:

,

The time spent onthis unit'wilf depend Upon a number of factors, in-

cluding the mathematical background of the.students, the time avail-

able for the unit, and the relative emphasis to be given to mathemat-'

ics content and toleaching methdds. The chart below suggests three

alternatives for sch*dulifig the work of the unit, each predicated on

a different set of values and priorities.. We have characterized the

alternative as:

A. ,Mathematics & Methods, Leisurely--for an integrited content and

methods course in which there is-timg to deal with this unit in

some detail. About 20-25 single periods would be needed.

. Mathematics & Methods, Rushed--for an integrated content and

methods course in which this.unit has.low priority or in which

.time is at a premium. About 11-15 single.periods would be

needed.

C. Mathematics Emphasis--for a course whtch is concerned mainly

with mathematics content for prospective teachers. About 15-20

periods would be needed.

These are just three of many possible alternatives; we hope they will

be helpful in deciding how to use the unit. The numbers in the table

.
below are estimates of th4 number of class perfOds needed for each

activity. The symbol "HW" indicates that all or part.of the activity

could be done as homework. When "HW" precedes the number of periods,

advance preparation by students is.suggested; when "HW" follows the

number of periods, homework to finish the activiiy is intended. "HW"

alone indicates that the entire activity could be done outside of

class.

142



.Alternative Timetables

Activity (A)
or'Project (P)

_

A. Mathematics &
Methods, Leisurely

B. Mathematics &
Methods, Rushed

C. Mathematics
Emphasis

Overview NW,1 HW,.5 HW,5 ,

Al
_

.5,HW .5,HW .5,11W

'A2 1 .5 .5,11W

A3 ,r, I-2,HW, 1,11W NW,.5,NW

PI HW,t5 NW, or omit 'HW,.5

A4 1,11W .5,11W .5-1,11W

P2 HW,.,5 HW 11W,.5

A5 2,11W 1-2,11W 2,HW

A6 2,11W -I-2,HW 1-2,11W

-

P3 HW,.5 HW HW,.5

-

A7 HW;I-2 HW,I HW, or omit

A8 2-3,11W I-2,11W 2-3,11W

A9 HW HW HW

P4 HW,.5 HW, or omit '
HW,.5

A10
0

1,11W .5,11W I,HW

P5 HW,.5. HW, or omit HW,.5

All 1,11W .5-1,11W 1,11W

P6 HW,.5 HW,.5 11W,.5

Al2 I-2,11W 1,11W I-2,11W

A13 I-2,11W 1,11W
.

I-2,11W
.

Appendix HW,I,HW HW,.5 or omit HW,I

Total
I

Ig-
2

- 24.
1

_
2

I I
10-2 , 14-

2
15
1-

20
2

3
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OVERVIEW OF NUMBER THEORY -

MATERIALS PREPARATION:

(00tional) The Mathematics-Methods Program slide-tape presentation

entitled "Overview of Number Theory."

COMMENTS AND SUGGESTED PROCEDURE:

The content of this activity may be either the slide-tape presenta-

tion or the essay on pages 7-13 of the unit. No matter which alter-

native is chosen, students Will gain more from the experience if they
read the questions (1-4, pp. 5-6) first. These questions can serve

as advance organizers to enhance the efficiency of their viewing or
reading. Discussion of the questions could be a fairly brief class
aCtivity.

ANSWERS:

The comments which, follow are not given as recommended answers to the

questions posed ln the unit, but are offered as samples of ideas,

which may be mentioned in the discussion.

0
1. Two major reasons for including the number theory strand in ele-

,

mentary school mathematics are (1) o extend and clarify con-

cepts in the study of, the whole numbers and the retional numbers,

e.g., factor, multiple, least common denominator,)GCF, and (2)

to provide problem-solving experiences, e.g., the discovery of

number patterns and generalizations. In addition to these sub-'

ject-centered reasons there are learner-centered reasons includ-

ing the possibility of he,lping students to enjoy working on

11110

puzzles and problems and the benefits of replacing dry tiresome

4
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drills by self-directed practice in the service of solving a

problem or detecting a pattern.

2. Problem-solving experiences such as those mentioned in (1) aboye

provide opportunities.for both individual and group exploration.

Children like looking for number patterns and properties, and

many of these can be identified by,children without a great deal

of teacher direction, e.g., "odds" and "evens." Carefully cho-

sen materials and activity cards often help to make number pat-

terns more obvious. Consider, for example_, children working

with odds and evens, E + E = E, E + 0 = 0, etc. (the materials

used ln slides 24 and 25). On the pther hand, some of the top-

ics associated with the application of number theory ideas to

rational numbers, e.g., least common denominator, may need more

careful teacher direction.

3. Each right triangle with integral sides (e.g., 3, 4, 5) corres-

2
ponds to a solution of the equation x + y

2
= z

2
. For example,

2 2 2
3 + 4 - 5 .

_

8 1 6

3 5

4 9 Z

There are eight magic squares using the

numbers 1 through 9. Each can be obtained"

from the one in slide 10 by a series of

rotations and,reflections.

145



SECTION I

DIVISIBILITY, PRIME NUMBERS, AND FACTORIZATION

INTRODUCTION:

-ThiS section includes the basic concepts of prime and composite, fac-

tor, mu'ltiple, and divisibility. These topics appear explicitly in

most elementary school mathematics programs, and are oftyn presented

through activities similar to those of this section.

MAJOR QUESTIONS:

These discussion or essay ormat questions attempt to capture the

essence of the section. They may be assigned as homeWork,-or modi=

fied for use as examination items, or discussed An class. The com-

ments which follow are not given, as definitive or even_model answers,

but we hope they may be-Useful in stimulating thought and Ai'scussion.

1. The prime numbers act as the building blocks for the counting

numbers, when the method of construction is multiplication.

Another way of constructing the counting numbers would be to

build' on one (unity) using a'ddition (or a succes'sor function) as

the method of construction.

(e.g., 1 = 1, 2 = 1 + 1, 3 = (1 +-1) + 1, 4 = ((1 + 1), 1) + 1,

or, 1 = 1, 2 = SOY, 3 = S(S(1)), 4 = S(S(S(1))), etc.)

2. The arguments advanced to support the use of trains and tiles

are '11 tile familiar ones concerning the advantages of using

concrete embodiments to develop concepts,.

3. In the multiplication table all the products which are not 1 X n

or n x 1 will be composites, but.it does not foljow that all the
_

composites less than 100 will appear in the 10 x 10 multiplica-

11110

6
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tiOn table. FOr example, 39 = 1 x 13 does not appeai' in the

table. Also the row and the column of multiples of 1 contain

some primes and some composites.

4. Most students will probably argue in support of introducing

prime numbers in the elementary school. Reasons may include the

usefulness of prime factorizations (in LCM, GCF, etc..), the de-

sirability of forming concepts and classifications of numbers,

and the motivation and positive attitudes that can be developed

through games and other activities.

5. Feasible'topics for.the elementary school might include 'just

about any from the entire unit, but the topics from this"section

are most appropriate.

6. This question asks for a description of the method of finding .

the LCM of two numbers by "trains" (c.f., Activity ?). One lays

out two trains or rods (of the respective lengths) Starting

"even," and searches for a place where they end "even." For

example', the diagram below shows that the LCM of 6 and 8 is 24:

3 x 8 = 24

4 x 6 24

even even

7. In addition to the method of constructing the counting numbers

given 'in (1) above, one might mention the construction of all

fractions frOM the unit fractions (fractions in the form k) by

repeated addition, the construction of Euclidean geometry from

points by set operations (the point-wise model of geometry), or

all rigid transformations in the planes a composition of flips

(or slides, turns, and flips).

1 4 7



ACTIVITY 1

DIVISIBILITY

MATERIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCEDURE

The .objective of this activity is to explore the notion of one number

"dividing" another. As is pointed out in the discussion, the term

"divides" in this activity refers to division without a remainder .or

"divides evenly." After students have met the concept and its nota-

tion, (alb), they investigate whether alb and blc implies alc; alb and

alc implies alb + c; alb and alc hnplies alb c; alb and alb + c 1110

implies alc; and alb and alc implies almb + nc. The first part of

the.activity will probably require some exposition an discussion,

but the conjectures are intended to be the type hat students are

able to work'out on their own.

ANSWERS:

1. 6142 42 = 6.n n = 7

.6118 18 = 6.m m = 3

42 + 18 - 6.7 + 6.3 = 6(78 3) . 6.10 so 61(42 + 18)

42 18 = 67 + 63 = 6(7 - 3)= 6.4 so 61(42 - 18)

2. 6142, but 6115 is false, i.e.,

3. Yes, alb b = ax and alc c - ay so b.c = ax.ay.

bc a(iay)'shows albc. It is even true that a2lbc.

4. The conjecture is correct. The three examples given shoul'd be

similar to the following:

Let a = 2 b = 6 b + c = 10 alb beCause 216
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al(b + c) because 21,10. Now if b +

c = 4 and alc since 214.

5: The conjecture is correct. The three examples given should be

similar to the following:

Let a = 2 b = 6 t = 24.

alb because 216, blc because 6124.

alc 15 also true since 2124..

6. The assertion is correct. An example of it is the,following:

Let a = 2 b = 6, c = 8.

alb beca,use 216. alc because 218. (2b + 3c) = [(2.6) + (3.8)1

= (1.2 + 24) = 36. 2136 so al(2b + 3c). An argument in special

case and general case supporting the assertion is the following.

1= 10 and b = 6, then

SPECIAL CASE GENERAL CASE'

since 216 6 is a multiple of 2

6 = 2-x 3

since alb b. is a multiple of a

b,= na

11111 since 218 8 is a multiple of 2

8 = 2 x 4

since alc c is a multiple of a

c = ma

36 = [(26) + (3.8)] = [(2.2.3)

+ (3.2.4)] = 2[(2.3) + (34)]

so 2136 .
0

2b + 3c = 2na + 3ma = a(2n + 3m)

so al(2b + 3c)

ACTIVITY 2

PRIME AND COMPOSITE NUMBERS

MATRIALS PREPARATION:

Sets of about 20 tiles (square or rectangular), one set per student

or group of 2-3 students in half the class; set's of CuisenaiTe. rods

. (abbui B of eac'h color), oneset per student or groups of 2-3 stu-

dents in 'half".the class.

9 1 9



COMMENTS AND SUGGESTED PROCEDURE;

It is intended that half,the class will work individuallY:or in small III

groups on Part A While the other half works individuaily: or in'small

groups on Part B. As individuals and groups finish they should share

and coMpare the experiences they have had working on the concepts Ow

prime and composite numbers in thesywo different formats (arrays of

tiles, trains of rods). The iatructor may wish to check that the

tables have been filled in and the questions answered completelland

correctly before concluding the activity with some brlef comments on

the usefulness of these two embodiments in explaining priMe and'com-
.

posite nwilbers to elementary school children.

ANSWERS:

Part A

I. There are two arrays- andtherefore two divisors of 2.

140,

2. The completpd table is

Number of
Tiles

Number of
Rectangular

Arrays

Dimensions
of Each
Array

Number of
'DivisorS

D'ivisors

3 2
.3 x.1

2 1,3

4" 3 2 x 2
4 x 1

3 '1,2,4 f

5 .
.

.

, 2
1 x 5
5 x 1

2 15
.

6 4

1 x 6
2 x 3
3 x 2
6 x 1

.

4 a,2,3,6

7 2 1 x 7
7 x 1

2 , 1,7

8

)

-4

,

1 x 8
2 x 4

8 x 1

,

4

_

1,2,4,8

10



,PEEee5Ea.

TABLE (cont).

Number of

Tiles.

NUmber of
'Rectangulae
, Arrays

Dimensions
of EaCh
Array

. .

Number of
Divi5ors

, Divi,s&s'

.--s ,

<

I. x 9

3 x 3 .

9 x 1

3'

.

1,3,9

10 , 4.

1 x 10
2 x 5
5 x 2
10 x 1

-1,2,5,10

11 2
.

i x 11: 2

.

1,11

12 6

1 x 12 ..

.2 x 6
3 x 4

6 x 2 ,,

12 x 1

6

.

,

1,2,3,4,
6, 12

.

3. 2,3,547,11,.

4. The composites betWeen 2 and 12 (inclusive) are 4, 6, 8, 9, 10,*

12; the'composites with an.odd number of divisors (4 and 9) are

perfect squares.

5. 1

Part B

1. 2 trains

2. The completed table is

ColQr of
Rdd

ii

Rod`'
Number

,

Number of
Trains of

Equivalent Rods

Number of
Divisors

.

.Divisors

Re4 2 2 , 2 1,2 ,

Light
Green

.3 2 '
.

1,3
.

Purple 4 3 3.

,4

1,2,4
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TABLE Icont.)

Color of
Rod

Rod

Number
i

Number of
Train% of ,

Equivalent Rods
Number of
Divisors

:

Divisors

Yellow 5 "2 '-;2 1,5

Dark
Green 1,2;3,6

Black 1,7

Brown 8 1,2,4,8

Blue 9 3 3

Orange, 10 4 1,2,5,10

See p.24
of unit

11 2 ,1,11

See p.24
of unit 12 6 6 r- 1,2,3,4,

6,12

3. 2,3,5,1,11; primes have exactly two divisors

4. The composite numbers with an odd number of trains (4 and 9 ) are

perfect squares.

5. 1, the unit.

ACTIVITY' 3,

FACTOR TREES AND FACTORIZATION

MATERIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCE6URE:

'14111krat

The content of this activity is divided into three parts: Part A:

Factor Trees, Part B: Factorizati(In into Primes,.and Part C: Expo7

nential Notation and the Prime. Factor/jzation TheoreM Most of this



material should be easy for students to master by reading the dis-

cussions and following the directions. Some points worth discussing

are the reaons for admitting factOOzation which has 1 for one of

the factors, and questions A3, A6, Be, B5, and C3.

ANSWERS: 'PART A: FACTOR TREES

1. 210 858

/N.
5 42 6 143

A /N
7 61' 3 2 11 13

A
2 3

2925 1785

5 585

13 45

5 9

3 3

3 595

5 119

7 17

2. a) 30 30

/N
3 10 '5 6

/^. A
2 5 2 3

36

/N.
3 12

. 2 6

3

,36

' 9,

/\
3 3 2 2

36

3 12"
4 3

2 2

30

/N
2 15

3 5,

36

'6 6

A: A
2,3 2 3

36 36

/N /N
2 18 ' 2 18

3 6 2 9

A.
2 3 ' 3 3

13
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c) There are 15 different complete factor trees for 72. Six of

them begin with 72

2 36

and proceed from 36 in the

,.

six ways given in (b) above.

72 72

/N le'N
3 24 3 24

/N /N
2, 12 2 12'A A

The remaining nine are:

72 72-

l'N l'N\
3 24 3 24

3 8 4 6

A A A
3 4 2 6 2 4 2 2 2 3

A A . A
2 2 , .2 3 2 2

72 72 72 72

/.
4 18 4 18 6 12 6 12A A A A

2 2 2 9 , 2 2 3 6 .233 4 2 3 2 6

A A , A A
3 3 2 3 2 2 2 3

72

8 9

A A
2 4 3 3

A
2 2

3. Three examples of composites with unique factor trees are

35 , 9 , and 27

A
5 7 33 3 9

A
3 3

The property common to such numbers is that they are either

squares of primes, cubes of primes, or have exactly two prime

factors.
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4. Since each prime has only itself and one 'as factors"and since.

1 has' been "ruled out" of factor trees (because factoring but a .

1 permits an unlimited number of branches to sproutat every

fork), primes may be thovght of as complete trees in themselves.

5. 30 = 2 x 3 x 5

36 = 2 x 2 x 3 ),( 3

39 = 3 x 13

60 = 2 x 2 x 3 x 5

72 =2x 2 x2 x 3x3

Yes, every composite number may be written as the product of

priMes. The primes that_one must multiplytogether are the

primes whiCh appear at the "twigs" or "acorns" of the number's

factor tree.

6. Having the tree grow upward has the advantage of more closely

resembling a real tree, but there are two main disadvantages:
0

First, as you write upward your hand covers the work you have

already done, and may cause a smear especially if you are work-

ing in ink. ,Secondly, it may be difficult to estimate in ad-

vance how much tpace to allow to be sure that you will hav

enough space as the tree grows upward. Most elementary school

children don't seeM to mind that the "trees" are "upside down."

The tree may even be considered as a root system--showing that

the composites have their roots in the prime numbers.

PART B: FACTORIZATION INTO PRIMES

1. 100 . 2.2.5.5

2 Example: 72 = 9 x 8 72 = 12 x 6

3 The primes are the ,fundamental or primary multiplicative build,

ing blocks of the counting numbers greater than one. Composites

can be thought of as being composed of primes. The composites

are compound numbers.

4 Yes, yes: The primes must be thought of as having only one fac-

tor, since factors of 1 are not considered.

15
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5. A number could have several prime factorizations if 1 were con-

sidered to be prime, for example: 6 = 2 x 3 6 = 2 x 3 x 1

6 = 2 x 3 x 1 x. x 1

111/1

PART C: EXPONENTIAL NOTATION AND.THE PRIME FACTORIZATION THEOREM

1. 39 = 3 x 13

60 = 2
2

x 3 x ,5

512 2 9'

3
27 = 3 S.

2. If m is a composite counting number, then m. is a product of 1

prime powers; thatis, there are counting 'numbers e e
1, 2' "'

en and distinct prime umbers pl, p2, pn such that
e e

2
e
n

m P1 P2 Pn

3. (i) The three special cases should be similar to the following:

Let 'p = 2, q = 3, b = 12. .Then 2112, 3112, 2-3 = 6 and 6112.

(ii) A counterexample in the case where p or q is composite

might be similar to th'e following: Let p q = 6, b = 12.

Then 3112, 6112, but 3.6 = 18 and 18/12'hence p-q1b,is false.

(iii) pit) and q1b means that in fhe priMbfactorization of 0

both p arid q appear at least once each. So b may be writ-

ten'"b=pxqx(o,ther'factors) since the order of factors may

be rearranged )(multiplication is commutative). Hence:obviously

p-q1b.

, MATERIALS PREPARATION:

None'

PROJECT 1
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COMMENTS AND SUGGESTED PROCEDURE:

IIIThe Projects in this unit provide*brief excursions into mathematical

ideas related to the main body of the unit, but not crucial to it.

Each Project can be dealt with in a variety of ways; it may be given

as optional or required homework assignments; it may be done in class

individually or in small groups; it may be presented to the elass by

the instructor or by a student or group of students who have prepared

it in advance; or it may be omitted. The problem-solving goals of

this unit (i.e., the process goals as d'istinct from the content

goals) are best served whenaeach student has the opportunity to grap-

ple with arid solve at least some of these.problems on his own. How-

ever, limitations on the time available or deficiencies in the stu-

dents' background may prevent this.

ANSWERS:
(

1. f2, 6, 10, 14, 18, 22, 16, 30, 34, 383. In fact, an even number

is VT E-composite if it is a Multiple of 4.

2. Yes, the argument is analogous to the argument given for the

existence of a factorization into ordinary primes.

3. 4 = 2 x 2

8 = 2 x 2 x 2

t2 := 2 x 6 ".

16 2x 2 x 2 x 2

20 2 )c

24 = 2 x 2 x 6

28 = 2 x 14

4. 36 = 2 x 18 36 = 6 x 6

5. An even number is an E-prime if it is not divisible by 4 (i.e.,

has a factor of 2 but not. of 2
2
).

17
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ACTIVITY 4

TESTING TOR DIVI5ORS

MATERIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCEDURE:

, It is expected that students will know or can discover by working

together in groups the tests for divi.Sibility by 2, 3, ..., 13. Af-

ter introducing the activity with some comments on the usefulness of

being able to tell by inspection the factors of ay/hole number, you

- an set the class to work in groups of,2-3 finding the divisfbility

rules and stating them carefully, While the groups are working you

should be available to encourage the hypothesis-making and testing

process, to provide an occasional hint, but not to pass out the an-

swers.

ANSWERS:

The table "Summary of Divisibility Tests" (p: 37) shoutd be filled in 11111

as follows:

Divisor Test

2

3

4

5

7

9

10

11

Is ones digit 0, 2, 4, 6, or 8?

Is sum of digits divisible by 3?

Is counting number defined by tens and ones digits divis-

ible by 4?

Is ones digit 0 or 5?

From the right, g up the digits by threes, and mark

these groups alter tely pos,itive and negative; then to

tal the signed group Is this sum divisible by 7?

Is sum of di,gits divisible by 9?

Is ones digit 0?

Mark digits alternately positive and negative from the

right; then total Ahe signed digits. Is this sum diyis-

ible by 11?
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Divisor Test

, 13 Compute the sum as in the test for 7. Is this sum divis-

.ible by 13?

1. a) 78 has a factor of 2 and a factor of 3. 78 6 = 13, Since

13 is prime, 78 = 2 x 3 x 13 is the prime factorization.

b) 693 ls divisible by 3, 7,.9, and 11. The prime factoriza-

tion is 693 3
2

x 7 x 11.

c) 12,760 is divisible by 2, 4, 5, 8, 10, and 11. Thejrime

factorization is 12;760 - 2x2x2x5x11,x 29.

d) 342,540 = 22 x 32 x 5 x 11 x 173

2. a) 563 - 365 = 198 = 22 x 9

b) 378,501 105,873 = 272,628 = 30,292 x 9

c) Let N = 10082 + 10a1 + a0 so if N* is NI with its digits in

reverse order, N* = 100,0, + 10a1 + a2. Assuming a2 > a0,

N - N* 100a2 + 10a1 + a0 - (100a0 + 10a1 + a2) . 9982 -

99a0 = 99(a2 - a0).,

So N N* is divisible by 9 (and also by 11).

PROJECT 2

HOW MANY NUMBERS TO TEST

MATERIALS PREPARATION:

None'

COMMENTS AND SUGGESTED PROCEDURE:

This Project is concerned with the fact that in testing a whole num-

ber n for divisors, one'nped not be concerned with divisors larger

than 4. Indeed, if din and if d > /r1 then n = dx where x is an-

other divisor smaller than /F. Therefore, d would have been dis-

cOvered as a divisor when x was tested. The 'alternative ways of
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dealing with the Project are mentioned in the instructor's notes to

Project 1 on p. 17.

ANSWERS:

1. The completed table reads:

Number
N Pairs of factors Of N

Smaller of
the pair L(N)

1,24

,

1 4

2;12 2
24-

3,8 3

4.6 4

1,12 1 3

2,6 c 2

3,4 3

1,36 1

2,18 2

36 3,12 3

4,9 4
,

6,6 6

1,60 1

2,30 2

60
3,20
4,15

3

4

5,12 5

6,10. 6

,--

2, If N . 24 n . 4

N = 12 n . 3

.N = 36 n = 6

N = 60 n . 7

In each case L(n) < n

3. To prove: rf p-q = N. then either p or q must be less than

or eciva1 to n. Here n is the largest'counting number sucb

that n.n < N.

Proof: Suppose that both p > n and q > n, and suppose that

p and q are,labelled so that p q. Then q2 > n2 and

q2 p.q = N. Consequently: n is not the largest counting-num

.ber such that n.n < N,

1 20
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111/1
The content of this activity is dlvided'intothree parts: Part A:

Identification of the Primes (Sleviag Procedure); Part B: The Un11M-

ited Supply of Primes (Constructing Primes); Part C: Strings Contain-.

ing No Primes (CorC'structing Sequences of Consecutive Composites).

The main ideas of the activity make interesting experiments worth
,

doing and discussing in class. Also included are a number of exer-

cises which can be done individually outside of class after the main
(

ideas have been presented (e.g.; A: 4, 5, 6, 7, 8, 9, 10; B: 4';

4, The largest-numben that must be tested is the largest ccAnting

nuMber whose square is less than or equal to N.

5.

. 100 64 -. 1008 80 230

L(N) 10 6 31 & 15

Reason 10
2 _

-, 100* 8
2

.-64 31
z

4 100 8.2 < 80 15
2

< 230

11
2

> 100 9
2

> 64 32
2

> 1008 9
2

> 80 16-2 > 230

- ACTIVITY 5 410

DISTRIBUTION OF THE PRIMES

MATERIALS PREPARATION:

Chart in unit (p. 45) prepared On chalkboard, chart, overhead projec-

tor transparency, etc.

COMMENTS AND SUGGESTED PROCEDURE:

C: 1, 2; Challenge Problem.)

ANSWERS:

1. The arrangement of the numbers 2,Wrough 103 is. intended to s.ug-

gest the means for croising out all the composite numbers. All

the numpers, after-2 in the first column and all*the numbers:in

the third and fifth columns are crossed out because they are

even multiples of 2). All the numbers after 3 in the

2 1



second column are crossed out becau.se th'ey a're multipies of 3.

-(The numbers in the fifth column Are also multiples of threei

but they have already been crossed out because they are even.

The even multiples of 3 are multiples, of 6.) The multfples of

5 and,of 7 are crossed out with the slanting lines shown in the

diagram below: The numbe-rs which remalb have been circled\

They are primes because we have crossed out.all the Multiples of..

all the numbers, less than 10 and 10.10 = 100. (The multiples of.

8 are also multiplts of .2 and the multiple's of 9 are also multi-.

ples of 3, and so have already been crts5ed out.)

0

4

2. The crossing lines 4re remihiscent of a sieve. The composites

are held bacX and-the primes siftthrough.

22
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3. The patterns-mentioned in this question are shown by the lines.

drawn in the tifagram on page 22. All of the primes greater than

3 are in the fourth column or in the sixth column (i.e., they

are either one more or one less than a multiple of 6).

4. six.

5. 25

6. Every eveti number has a factor of two, so,eyep even nUmbec

greaier than 2 (which is a prime) is composite.. The twin primes

less thaq0100 are 3 and 5, 5 and 7, 11 and 13, 17 and -49,-,29, and

31, 41 an0 43, 59 and 61, and 71 and 73.

7. Below are possible (but not the only) solutions. As the conjec-

ture is stated, the case of the two prime's being equal

34 = 17 + 17) is not excluded.

30 = 13 + 17

38 = 31 + 7

32 = 13 + 19

40 . 17 + 23'

46 = 11t 29 48 . 19 + 29

8. a) 5 + 7 . 12 12/12

41 + 43 . 84. 12/84-

i71 + 73 . 144 12/144

34- = 5 + 29

42 = 5 +' 37

50 = 19 + 31

36 = 17 + 19

44 = 7 + 37

b) In each pair- of twin primes, the Smaller one is one less

than a mu1tiple of 6 and the larger one is +one more than a

multiple of six. So,let P.1 . 6n - 1, P2 . 6n + 1. Thus.

P
1
+ P

2
= 6n - 1 + On 4- 1 = 6r1+6n = I2n. And 12n is obvi-

ously a multiple of 12.

9. Below are possible (but not the only) answers.

31 = 3 + 11 + 17 43 = 7

33 . 3 + 11 + 19 45 A 5

35 = + 11 + 19 47 . 7

37 = 5 + 13 + 19 )49 . 7

39 =.7 + 13 + 19 51 . 11

41 . 5 + 17 + 19

+ 17 + 19

+ 17 + 23 .

+ 17 + 23

+H19 + 23

+ 17 + 23,

23
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A special case Ofthis conjectureis a conjecture made the

American mathematician levy in 1964. 1.evy's conjeCtüre is that.,
every odd number greater

Stpan

7 is,the sum of twice one prime

plus another (i.e., N . 2p + (1,4ere N > 7 is odd and p ond

are distinct primes).

10. An answer to the challenge problem is given below,

a) g(l) = 43

g(2) = 47

g(3). =

g(4) . 61

b) g(40).. (40)2 + 40 + 41

. 40(40 + 1) + 41

= 40(41) + 41 = (41)2

g(5) . 71

g(6) . 83

g(7) 97

Part B

1. The table should be completed as follows.

Given .Prime New Numbers Generated by Proposed Method

2 + 1 ; 3 (TOMO)
.

,-... 3 (2.3) + 1 = 7 (prime)

-5 (2,315) 0- 1 . 31 (prime)

7 (2.3.5-7) + 1 . 211 (prime)

. 11 . (2.3.5.7-11) + 1 . 2311 CpriMel

13 (2-3.5.71113) + 1 . 30031 . 59509

17 (2-3.5.7.111317) + 1 . 510,511 . 1997277

.

2, -Yes, in fact in Any set of an even number of 'consecutive even'
4

"numbers there are as many 6-pames as therR are 6-composites,

because the 6,7-primes aro even numbers which are non-multiples of

4 and the E-composites are the multiples of 4, .

0384.Given a prime p, consider (2.3.....p) +.1. The number one more

than the product of all the primes less than or equal to p,
..

's number has no prime factor less than or equal to p, because

th reMainder upon division by each prime less than or equal to



p 'dill be 1. Hence this number is either.prime or has a prime
9

factor larger than p.

-Part C

Number' 5042' .043 5044 5055 : 5056 5057

Found by 7! + 2 71. + 3 7! + 4 7! + 5 7! + 6 71 + .7.

Has a factor of 2

2. The 1000 consecutiie composites could be found by evaluating

[(1001)1,it [(1001)! + 3], ..., [(100I)! + 1000], .[(100)1y+

1001]. Note, however, that each of these numbers iS on the or-

der of 4 x 10
2570 0.e.; has 2,570 digits in its base ten.nu.

meral). We do not recommend that you ask,students to gi'Ve their

answerf tothis question ih expanded notatim

ACTIVITY,6' .

AN APPLICATION: GCF and LCM.'.'

MATERIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCCDURE:-

The content of this ativity ts separated into three parts,: Part A:

LCM, Part B: GCFCarid Part C LCM, GCF, arid Prime Factorization. IA

4the, first two parts the students.work with the,concepts and formulate

definitions; in-the third part, students ekplore alternate methods of

finding LCM and GCF and some properties of the LCM-and GCF of a num-
,

ber. A useTul organizatiorral sequehce for this activity wo:uld ,be

troduction, group work to formuiate definitions, class discusidn of

the definitions, and exercise completion as homework.

25
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'ANSWERS:

Part

1. a) 117

b). $00

c) 120

% -

Zero cannot be the denominator of a. fractidn, becaute division

by 0 is undefined.
1.

3. Students' answers to this question should be complete,sentences

corhaihing the words -"multiple(s)," "common" -(or "in both tett")

and 'least" (or "minimum")..,

Part El-

1,. a) 7

b) 15

c) 1

2. Students' answers,to this question should be complete sentences
11110

containing the.words "factor(s)," "coMmoe (or' "belonging to

'both se;ts"), and "largest' (or "greatet-t,"

3. The example given shOuld be similar to the following:

x = kfmcGCF (6,12) = 6 so

6 6 6 1"

12 12 6 2

The product of their LCM and their OCF is the product of the two

numbers (i.e., GCF (a,b) x.LCM (a,b) = a.b)-
.

5. Yes, any factor of either of the two numbers will be a factor Of

every common MultiPle of them.
,

6. The GCF-of three,cOguting numbers is the larg-st counting nmmber

which is a factor of all three of them.

a) 3 b..) 1 -c) 15

26



7. As defined, *

'are:

-7

is a. binary Dperation. Some of its propertieS

(1) a*a.= a ( .e., * s idempotent)

(2) a*1 = 1

(3) (a*b)*c = a*(b*C) (i.e., * is associative)

(4) a*b = b*a (i.e., * is commutative)

(5) a*b < a a*b < b hence
,

a*b*c < a a*b*c < b a*b*c < c

a*b*c < a*b a*.b*C < a*c a*b*c < b*c

(6) if p and q are.primes p*q = 1

.(7) if amn m*n = m

8. Using the result of exercise (4) above, the GCF of a and b

must be 1, (i.e.., they are relatively prime)

Part C

1. a) 12 2.2.3 40 = 2.2.2.5

LCM (12,40) = 2.2.2.3.5 = 120

54 = 2.3.3.3 72 2.2.2.3.3

LCM (54,72) = 2.2.2.3.3.3 = 216

c) 9 = 3.3 39 = 3.13

LCM (9,39) °. 3.3.13 = 117.

2. 5ally's method is to write out the prime factorization of each

of the twO nu5pers.Vp LCM is the product Pf,all the prime,

numbers which appear )11 either of the two prime factorizations,

each pr- ime taken as many times as the maximum number of times it

appears in either prime factorization.

3. a) 54 = 2.3.3.3 72 = 2.2.2,3.3 GCF (54,72) = 2.3.3 = 18

b) 60 = 2.2.3.5 75 = 3.5.5 GCF, (60,75) = 35 = 15

c) 198 = 2.3.3.11 162 = 2.3.3.3.3.

GCF (198,162) = 2.3.3.. 18.,

4. Sally's method is to write out the prime factorization of each

of the two numbers. The GCF is the product of all the prime

numbers which Appear in bath of the two priMe factorizations,

27
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each prime taken as many times as the' minimum number of times

it appears in either prime Actorization.

5. The two facts to be explained are (1) that the product of the

LCM and GCF of two numbers is equal to the product of the two

numbers and (2) that.the GCF of a pair of.numbers is always a

factor of their LCM. To see why these facts are true, we-bagin

with an example. Let the two numbers'be 420 and 90. We find

their LCM and GCF by using the'method of writing them as the

products of primes.

420 = 2
2
x 3 x 5 x 7

90 - 2 x 3
2
x 5

The LCM of 420 and 90 is the product of all the primes which

appear in either of the two prime faCtorizations, each prime

taken as many times as the maximtim number of times it appears in

either factorization. The GCF of 420 and 90 is the product of

all the primes which appear in both of the two prime factoriza-

tions, each prime taken as many times as the minimum number of

times it appears tn either prime factorization. In the diagram .

below we have circled the factors taken in the LCM and-boxed the

factorsvtaken in the GCF.

IGCFI

420 x xrTlx0.

90 =LI} (!) x0

(420,90) - 22.32.5.7 =71260

(420,90) - 2-3.5 = 30

3

Since all of the factors of 420 and 90 are either boxed or

circled, the product of the LCM and GCF is equal to the product

of 420 and 90. Also note that the LCM contains all the factors

which appear in the GCF (as well as others). This shows that

the GCF is a factor of the LCM.

The steps used above are generalizable; that :is, they apply to

anytwo nuMbers a ,and b. First we write out the prime fac-

.186.8



torizatiorf,of a and b.- If a prime p appears in the faCtor-

'ization of \a but not b, then it appears in the LCM(a,b) as

many times as,it appears in a. Likewise, if it appears in b

but not in it appears in the LCM(a,b) as many times as it

appears 6 b. If a prime appears in both factorizations, we'

must note how many..4jmes it appears.,in each. Suppose p ap-

pears s times in a and 't time's Alt) b. Then it wil.1 appear

in the LCM as many times as the larger of -s and t and tn the.

GCF á many times as the smaller of s and .t. If it appears

in bOth prime factorizations thte saMe number of tiMes, it ap-

pear in the LCM that number of times and in the GCF that number

of tiknes. Each and everylprime factor in the twoPrime factori-

zations will be assigned' to either the LCM or GCF. Thus the

produnt of the LCM(a,b) and GCF(a.,6) has exactly the same fac-,

tors S the product of a and b, so they are equal.

6. If you know the prime factorizatidn of a number, all the factors

of tha number may be found by taking all possible combinations

of the J)rime factors (one at a time, two at a time, all -of

them at once). The number.of factors of any' given counting num-

ber is the number of different subsets that can,be formed.from

the set of its prime.factors. If a counting number' a tias s

different prime factors, then a has 2
s factors altogether. .If

k k k
n

a has a prime factorization of the form a = pl
1
p2

2 for

pl < p2 < < pn primes and each, ki > 0 for i = 1, ...n, Olen

the number of factors of a is (k
1

+ 1)(k
2
+ 1)...(k

n
+ 1).

PROJECT 3

A PARLOR TRICK BASED ON NUMBER THEORY

MATERIALS PREPARATION:

None

29
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COMMENTS AND SUGGESTED PROCEDURE:

If time allows, this trick should actually be performed in .class in,

, order'for it to have the most impact:. The solution 'of the trick

could be presented by the instructor or by a class member; it could'

be assigned as classwork in groups; or it cciuld be given as an op-

tional or'required homework assignment.

ANSWER:

When you make a six-digit number from a three-digit number by repeat-

ing the original digits you are in effect multiplying by 1001. The

.prime factorization of 1001 is 1001 . 7 x 11 x 13, so successive di-

visions of the six-digit number by 7, 11, and 13 will never leave a

remainder, and the final result amounts to the original number first

mul,tiplied by 1001 then divided by 1001, or the original three-digit

number.

Another trick similar to this one is the following. Give a

guest a sheet ofvpaper that has been divided intO two columns,,and in-

vite him to choose any three-digit number and write it at the top of

each of the two columns. In the example below, the guest has chosen

237. Invite another guest to choose another three-digit n,umber and

write it below the first number in the first column. In the txample

below, the second guest has chosen 695. You now announce that you

will choose a number to write below the first guest's 'number in the

second column. Ask another guest'to multiply the two numbers in each

of the two columnS, then take the sum of the products. You can non-

chalantly write down that his sum will be the six-digit numb0 formed

by repeating the digits of the first guest's number. The trick de-

pends upon your choosing the second number in the seCond column so

that its sum with the second guest's number is 1001. In the example

below, the second guest chose 695, so you choose 1001 - 695 = 306.

3



4

217--

695

1185

21330

.142200

164715

72522

237237

MATERIALS PREPARATION:

306

1422

71100

72522

ACTIVITY 7

SEMINAR

Some of the following elementar.school textbooks may prove useful as

a resource for this activity. They could be available for use in

Class or suggested fo'r use by students in preparing for the clasS

discussion.

Johnson, Donovan et al. Activities in Mathematics: First Course,
Patterns. Glenview, I114nois: Scott FOresman and CO., 1971.

LeBThnc, John F. Experiences in Discovery: Enrichment Materials for
Elementary Mathematics, Level D. Morristown, New Jersey: Silver
Burdett Co., 1967.

Manks, John L. et al. Ehlarging Mathematical Ideas.
Boston: Gfnn and Co., 1961.

Manks, John L. et al. Exploring Mathematical Ideas-
Boston: Ginn and Co., 1961.

Manks, John L. et al. Extending Mathematical Ideas.
Boston: Ginn and

f

o.., 1961.

May, Lola J. Elememt a y Mathematics: Enrichment, 5.
New York: Harcourt, Brace, and World, Inc., 196

Teacher's ed.,

Jeacher's ed.,

Teacher's ed.,

Teacher's ed.,
6.

May, Lola J. Elementary Mathematics: Enrichment, 6. Teacher's ed:,

New York: Harcourt, Brace, and World, Inc., 1966.
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COMMENTS AND SUGGESTED PROCEDURE:

The essence of this activfty is investigation of number theory Wori

actually being done in elementary school classes, arfd discussfon of

it. Feasible organizational patterns for this actWty include (a)

having students write brief answers to the questions outside of

class,-(b) discussing the questions in small groups; or (c) having

the in'structor lead'a class discuisiom.of the questions. No matter

how the class is handled, advance research by students will probably

be necessary to insure that the.discussion is based on classroom re

alities rather than on mere opinions of what ought to be.

ANSWERS: ,

The answers given below are by no means the only correct answers.

They are, rather, observations that mighi be made (by the inStructor, .

if need be) in the course of the discussion.
,

1. One reason that number theory is the basis of so.many popular

puzzles and tricks is thag the layman hat relatively more expe-

rience with the whole numbers, their properties, and the'bpera-

tions on them than with the objects and, prorierties of other 1.

branches of mathematics. A second reasOn is that number theory

is a rich branch of mathematics--rich in the sense that it.con-
,

tains a remarkable number of interesting reSults which arise

from the well-known properties of the counting numbers.

2. There are many curious examples of numerology, in primitive cul-

tures; some of these are mentioned in the overview16age 5).

The fact that modern man, too, is affected by,number supersti-

tions is well illustrated by the fact that verY few hoeels or

apartment buildings have a thirteentIvfloor ;Kirby the .fact that

air travel volume is always noticeably lighter on a Friday the

thirteenth_than on comparable days.

3. a) Some possibilities are factors and multiples, primes and

composites, GCF's and LCM's: odds and evens. In connection

with odds and evens, a class could discuss what happens in

each of the following cases.
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Odd..x Odd =

Odd x Even =

'Even x Even =

Even x Odd =

The class could look at a few numerical examOles and then

look at rectangular arrays, etc.

Some probing questions might be:

A. Should odd x even = even x odd?

B. If the length.of one side of a rectangle is'an even num-

ber and the length of the other side is a coLinting num7

ber, can you tell whether the area is odd or even?

C. If the length of one side of a rectangle is an odd num-

ber and the length of the other side-is a countihg num-

ber, cah you tell whether 'the area is odd or even?

D. What properties do 0 and 1 have with respect to multi-

plication? Do odd or even mimic 0 or,1?

b) A. One example would be to let the children compll\or

create multiplicative magic squaressquare arrays of

' distinct counting numbers such that the product of the

elements along each row, column, ancimaindiagonal is

the same.

1 50

10

100

A partial array like the one at left

could be given for the child to com-

plete. The children could then try

to construct their own squares. Once

some children have constructed magic

squares of their own, the teacher

could ask whether it is possible to

construct a magic square all of whose*

entries are:primes or all of whose entries are squares,

e4c.

Activity 8 contains several more examples of pattern finding

in solving number theory problems.
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c) Teacher A claims she wishes to give the children more compu-

tational practice. If so, number, theory itself tan,ledd to

a reasonable amount of such- practiCe-without resorting to

tiresome drill1. -Often a child will perform Ony more

arithmetic operatrIons.in the process of testing a-number-

theoretic hypothesis than he tould ever'be expected to do in

a simple drill exercise. -The substitution of intrinsic mo-

tivations for extrinsic ones makes all the difference.

To sommarize, there appear to be two majOr reasons for in-

cluding the'number theory strand in elementary mathematics:

1) to extend and clarify concepts oCcurring in the

study of the whole numbers and the rational num-

bers, e.g., factor,,multiple and least common de-

nominator;

10 to provide problem-solving ,experiences, e.g., the

discovery 'of number patterns and generalizatlons.

1
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SECTION'II.

RROBLEMS AND PROBLEM SOLVING'

4

INTRODUCTION:

This section is concerned with problems and problemiolving pro-.

cesses. 5ince.number theory ts such a fruitful source of easily

posed, easily understood, yet.challenging problems, the opportunity

has been taken to present (in Activity 8) an organizational scheme'

for attacking problems. Activity 9 containt a number of problems of

various levels of diffiCulties for students to Work at and Sblve by

the.end of the unit: The section concludes with Project 4, on

Pascal's Triangle.

MAJOR QUESTIONS:

I Even in the simplest problemsp.ones. in which the answer is ap-

parent almost from the beginning, it is uteful to .guide,,one's

thinking by asking, "What am I tO do?, What do I know?, What can'

I conjecture?, Is it true?, and Have I solved the problem?" In

problems which involve finding all tile solutions *p a given set

)1

Of condAions (e.g., finding all the'factors of some large nUm-

bers) it is necessary to have a systematic appro ch in order to

know ',41en all the solutions have been found. Problem solving.

always invokes reflective thinking, that is to say, not only

think0g,about the problelvItselfut also thinking about the

progress that one's thinking is making tOWard the solution.

.
Teachers often notice that their comprehension of a topic is

enhanced in the process of preparing to teach that topicito stu.

dents. This experience may be explained to a large extent as an

instance of.the organizing power of thought that is necessarily

in the reflective mode. Pres'umably, problem-Solving situations
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that put the elementary school -chiidren's thinking 16to this

mode would benefit them as.well.

4. The teacher who gives this wt of.correction to a student pob-

Sbly assumes that the student has incorrectly answered the ques7

tion, "What exactly am f, to do?" No Matter how many-times a

studentieads and reread$ .a.problem, the teacher cannot be sure

that the student has answered this question correctly. The

teacher.needs to ask questions to find out whether the student's

idea of what he is to do or to find out matches the problem ac-
I

tually posed.

1.76
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ACTIVITY 8

ORGANI-ZING THE PROBLEM-SOLVING PROCESS

MATERIALS PREPARATION;

None

COMMENTS AND SUGGESTED PROCEDURE:

This activity is clearly the longest and one of the two (along wtth

Activity 9) most difficult ones of the entire unit. Thts activity .

also contains the' best exemplars of the problem-s.olving process which

the unit seeks to develop. It is suggested that theAlscussions and

examples be dealt with thoroughly and th.it t'he students' exercises be

checked carefully to see whether they have understood,and correctly

adopted the problem-solving techniques to-which they are being ex-

posed,

ANSWERS:

part g

1. Both questions can be anWered in the negative if one knows that

last digit of a peilect Square can be 0, 1, 4, 5, 6, or 9

but never 2, 3, 7, or 8. Another proof that the sequence 2, 22,

222, ... contains no perfect squares is tle following. Suppose

n
2
. 22 ... 2, then since 22...2 is even, n

2 must be even which

means n itself is e'ven, So there is some k such that

n = 2k(2k) = 22,..2. This means 4k2 = 2(11...1) or that

2
2k - 11...1. But this is clearly impossible because the left

side 21(2 is even but the right side 11-1 is odd. Another

proof that the sequence 3, 33, 333, ... contains no perfedt

squares Is the following. Suppose n2 = 33...3, then n2 .

3(11-1). This shows that n2 has a factor of 34 so n itself
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Must have a factor of 3. Let n = 3k_ Then.(3k)2 =

or 9k
2
= 3(11...1) or 3k

2
= 11...1- This shows that 11...1 has

a factor\of 3; let 3a = 11...1. For this to happen the lett

-107717 a would have to be.7, but this iS imposSible because

:1 = k2 is a.perfect square and there are no perfect squares that

have a oneS-digit of ;7.

Part B

I. First consiructthe table

N
cL

2

q 4..r

3q
,

0

1 2
1
= 2 0 2

'2 2
2
,.= 4 13

3 ,

2 - 8 '2.3 2

4 2
4

. 16 5.3''

-5
j = 32 10.3

64, t 21.3
_

1

We hypothesize that the remainder when 2N ls divided by 3 is 1

if N is even and 2 if N is odd. From'this we predict that when
4

2
89

is'dtvided-by 3 the remainder is 2.

First construct the table.

4

(SEE THE FOLLOWiNG PAGE)



Problem I

N ' 3
N

.

N _
3 - 7q + r*

7q

,0

1

2,

3

4

5

6

7

.8

3 =

1
3 =

2
3, =

3
3

=

. .

3
4

.

3
5.

=

3
6

=

3
7

=

38..

1

3
-

9-

27 .

81

243

729

2187

6561

70

7.0

7.1

7.3

7.11
(,

&7.34

7.104

7.312'

.7.'937

1
_

,, 3

2

r-L76
.

4

5'

1

3

2

We hypothesize that the remainder When dividing 3N 'by 7 is de-

termined by the remainder on dividing N by 6, and:'.thit if the

remainder on dividing N by 6 is n then the remaihder-on di-'

viding 3N by 7 will be m where the reletion betWeen m' and'

n is given by the following table.

10 5

3 4

Hence we predict that the remainder on diViding 3197, by 7 will

be 5 becauSe:197 -:- 6 = 32 R 5.-

3. Students' answees should,be similar to the following:

Conjectured

(not proved)

AnsWer

SolutiOn to problem

for small values of

the VariableS' ,

Application, of the:

hypothesis to Vilues

g i'ven i n ;the, prdbl em

fr

39
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Observation

of Patterns

Hypothesis tha

the Pattern holds

for larger,values

of the variable4.4_,



Part 6

1. + 3 + 5 + + 9 = 5 = .25,,

1 + 3 + 5 +.7 + + 19 =' 102 .= 100

1 +-3 + 5. + 7 + + 99 = 1002 = 10000

2-4 4 + 6 + + 2'22 = .

(1 + 1) 4. (3 + 1) + (5 + 1). + + (221 + 1 ) =

(1. + 3 + 5 + + 221) + 1.111 =

(111)2"+ 111 --.12321 +111 = 12432

Part D
1,

1
1. 1 + 2 + 3 + + 9 9-10 =

2 .

1
1 + 2 + 3 + 19 = = 190

2

1 + 2 + 3 +, + 99 1-99.100 = 4950

2. Tlie relation is S
2n+1

= 8T + 1.
n

This relation -can be7proved geometritally.by observing thebat-

tern shown below.

n= 1

n = 2

t)

n = 3

40
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rt= 4

The pattern for general

n is now clear:

2
H
n

= n + n - 1 = n(n +' 1) + 1

4.. Pattern finding has been an important element in each am:revery'

question of this activity. Some of the' Cigestions isk the stu-

dent specifically to findta pattern (e.g.:D2, D3); in others,

the finding of a pattern has been a prerequisite or perhaps sub-

conscious stel) in the process of finding a particular numerical

answer.

ACTIVITY 9

PROBLEMS

MATERIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCEDURE:

Unlike the problems in Activity 8 which were solved by copying and

extending certain well-defined problem-solving strategies presented

in the text, these problems are to be'Solved by,individual students

41
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using their own idiosyncratic methods. The directions in the stu-

dents' unit indiCate that some Dr all Of the.problems will be as-

signed, that students will have a fair amount of eime to Work on,

them, and that the assignment is due by the end of the unit. fhe

choice of which problems to assign, and of how much time to allow

must be made on the,basis of a careful analysts of students: abilf-

tieS and backgrounds and the difficulties inherent in the problems.

Note that the problems'of Part B are considerably more difficult than
, .

those ofPart A.

Part A

1. Yes. If n is even, n
2

is also even, and n + 'n
2

is the sum of

two even numbers which is also even. If n is odd, n
2

is also

odd and n + n
2

is the sum of two odd numbers which is even.

2. Yes, Yes, Yes. It n is even, both n and n + 2 are even so

+ 1)(n + 2) is divisible (twice) by 2. If n is odd then

(n + 1) is even hence n(n + J)(n + 2) is divisible' (once) by 2.

3. Yes. If a number n is odd it can be.written as (2.k + 1). for

some k = 1, 2, ... Thus n2 = (2k + 1)
2

= 4k
2

+ 4k + 1 =

4(k
2

+ k) + 1. Now Ae know that (k
2
+ 0 is even (Question 1

' above) so 4(k
2

+ k) has a factor of 8. HenCe n may be written

n = 8m + 1.

4. NO, the product of two twin primes has no factors other than

one, itself, the first prime and the second prime. However, the

sum of two twin primes greater than 3 is divisible by 12, be:

cause the smaller may be written 6k - 1 and the larger may be

'written 6k + 1.. Their sum (6k + 1) + (6k - 1) = 12k, which is

clearly divisible by 12.

12 32 52
+ (2n

1)2 n(4n
2

- 1) .

is very difficult
3

to discover by means of pattern.finding. However, one may write

o

2 ,n 2
(2k 1) =E 4k - 4k 1 = qz k 2 -4 k - n

k = 1 k = 1 k = 1
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to reduce the prOblri to one of finding a formula- for the sum

of the squares of the counting numbers and a formula for, the sum

of consecutive coun ing numbers. Knowing that.

n 2 n(n_+ 1)(2n +' 1) n n(n + 1)

Z 6
and that k .

2

k=11 k = 1

and using-a little.algebra yields the result above.

Part B

1 Closed, closed. Whether a locker is initially, open or closed

does not affect its (final) state after all boys have pasSed

because the first boy opens all the lockers. Thus we may sup-

pose that each lOcker is 'initially closed. This assumpiion al-

lows us to make the following general statement: The state"of

the k
th

lOcker is changed by the n
th

boy if and only if k is

a multiple of 4 Therefore, the k
th

loCker changes state for
r

each n that is a factor of k.. ff the total number of boys

is no fewer than k, then the-number of state changes that the

k
th- locker undergoes as the boys pass is just the number of fac-

tor.; of k. Since 1000 = 2353, 1000'has 4 x 4 or 16 factors.

5ince the 1000th locker was initially closed and it underwent an

even number of state changes, it is closed after the 1000th boy

has passed. The 764
th locker also ends up in a'closed state

because 764 equals 22 x 191 and therefore has 6 factors. As a

matter of fact, all counting numbers have an even number.of fac-

tors except those which are perfect squares. Thus all lockers

except those whose numbers are perfect sqUareS will be closed.

Since 1000 and 764 are not perfect squares these lockers will be

closed.

2. The next five Py agorean triples generated by this algorithm

are (7,24 , (9,40,41), (11,60,61), (13,84,85), and

(15,112,113).

3. a) Suppose a gleep is worth 7¢ and a glop is worth 23¢. Then

giving the clerk 10 gleeps and receiving 3 glops in change
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is equivalent to giving the cleric Hence, the students

can buy all items.

I
b) Suppose a gleep is worth 6t and azglop is worth Zit; Then

giving, the clerk 1 glop and receiving 3 glcbs in change is

equivalent to giving the clerk 3t. Hence the students can

buy any item (and only those items) Whose cost is a multiple

of 3t.

(If s and t are the integral values in cents of two

coins, then any item (and only those items) whose cost is a

multiple of GCF(s,t) can be bought because

(ms + nt > 0:m, n are integers)

is just the set of counting number multiples of GCF(s,t).)

4. 92836 29786 + 850 + 850 = 31486

+ 12836
105672

5. The smallest solution to this problem is 25 coins, but 81n + 25,

where n = 0, 1, 2, ..., is an expression which gNes all possi-
;

ble values for the number of coins originally in the ehest. One

method of solving the problem is to let n be the number of

coins each pirate got in the final sharing and to generate ex-

pressions for the number of coins at each of the stage of the

story.

3n coins just before final sharing

3
243n) + 1 coins before 3rd pirate raids the chest

3 9
--(--n
2 2

+ 1) + 1 coins before 2nd. pirate raids the chest

3 27 5+ T) + 1 coins before 1st pirate raids the chest

81 19
Thus, the original number of coins in the chest was + ,

and we seek a value for n which makes this a counting number.
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PROjECT 4

PASCAL'S TRIANGLE

MATNIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCEDURE:-

This project, like the other three which have preceded it can be pre-

sented'in a variety of ways.. See the notes to the other Projects for

ideas.

ANSWER:
ci

1. The set (A,B,C,D) contains 4 different subsets of one element,

6 different subsets of two elements, 4 different subsets -of

three elements, and.1 subset of four elements. If one notes

that there is 1 subset containing no elements (the empty set),

then one has a one-to-one correspondence between the number of

subsets of different sizes and the numbers in the 4th row of

Pascal's triangle. In general, the k
th

entry of he n
th

row of

Pascal's triangle (counting the single 1 at p as the Ot h

row) gives the number of k - 1 element siosets of an n ele-

ment set.
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SECTION III

APPLICATIONS, CONNECTIONS, AND GENERALIZATIONS

INTRODUCTION:

This section contains activities which use the number theory ideas

developed in Section I. As the title indicates, the section givgs

not only uses (applications) but also connections between ideas and

some mathematical generalizations. For the most part, the ideas of

this section do not have direct implications for the elementary

school./ Instead, the content ts placed in a Mathematical settfng

and pursued in such a way as to whet the student's appetite. For

students who do wish to study more number theory, an'extensive bibli-

ography is included at the end of the unit.

MAJOR QUESTIONS:

1. The days of the week and months of the year may be thought of as

remainder classes just as the 12-hour clock was in Activity 10,

question-4. Activity 12, Part C contains other rgal-world in-

stances of the concept of remainder classes.

2. The process of identifying a,symbol with an equivalence class is

essentially the saMe in both cases. In the association of num-
,

Uers,with numerals all sets of, say, 3 objects are equivalent in

their threeness. In the association of-symbols with remainder

classes, It is numbers (themselvet abstractions) which are ab-

stractly related by thg equivalence.

3. Yes. Equality in the ordinary sense has all the properties of

congruence but not vice versa. Equality, then, is a stronger

relation, but both congruence and equality are instances of the

general concept of an equivalence relation.
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4. In geometry there are many examples of partitioning a setjv an

equivalence relation. Both "is similar to" and "is congruent

to" ate equivalehte relatipos defined on the set of geometric

figures. The relation "has.the same number of sides as" iv..6

Useful equivalence relation defined on the set of polygons. In

algebra one can partition the set of linear equations in,one

variable into equivalence classes on the basis of slope (i.e.,

y = me + bl is equivalent to y = m2x + b2 when ml = m2). One

notes, for example, that the sum arid difference of two equations

the same equivalence class are also in the same class.
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ACTIVITY 10

REMAINDER CLASSES

MATERIALS PREPARATION:

(Optional) sets of yles.

COMMENTS AND SUGGE 0 PROCEDURE:

This activ.ity 1nt4duces the conce0 of remainder classes through

- concrete (or semi-contrete) embodiments: The activity should not

take long, nor is it .'difficult, but it elould not be overlooked,

becaust it provides the real-world roo45jto the toncepts explored in

Activities 11 and 12 (on modular arithmetic).

ANSWERS:

I. Rows of 3:

Rows of 4:

MINNEr=
=In

d
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Rows of 5:

11

2. a) The:different arrays show a number being partitioned into a

rectangle of q rows-each of length b (6q) and a part row

-(r) where the number in the part row r is less than the\

row length. b

b) 0,1; Q,I,2;- 0,1,2,3; 0,1,2,3,4

c) - 1 ,

3_, a) Three: numbers with r 0, with r = 1, and with r =

b) Two: numbers wi.th r - 0 (the even lum6ers) and those with

r = 1 (the odd numbers)

c). Five: those with r = 0, with r = 1, with r = 2, with r

twith r = 4.
0

d) This is guaranteed by the divlsion'algorithm which asserts

that given a and b there exist unique values for I and

r such that a = bq 4- r 0 < r

4. The times on the 24=hour clock range from 0000 hours (0 hours 0

minutes after midnight) to 2359 hours (23 hours 59 minutes' after

49
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mfdnight). To convert from:24-hour clock to 12.-hour clock we

divide by 1200 and consider the quotient and the remainder. The

quotient tells you whether the time is before or afterndon, the

- remainder give you the time in 12-hour clock. FOr example.s. :.

1415 hours . 1200 (1) + 215 so. 1415 hours is 2:15 p.m.;_0720

,1200 (0) + 720 so 0720 hours is ,7:20 a.nt.

PROJECT 5

THE 5UM OF THE FIRST N COUNTING -NUMBERS

'MATERIALS PREPARATION:.

None

COMMENTS'AND SUGGESTED PROCEDURE:

This Project takes another look (from a different perspettive) at a

fact discovered in Activity 8. It may be dealt with in,any of the

several ways suggested 'in the*instructor'S'notes to the other PrQ-

jects.

ANSW66:

1 + 2 + + 14 = 1 + 2 + + 13 + 14

sum 15.

There are 14 such sums, so 1 + 2 + + 14 = 7.15.

1 + 2 + + 20 =A + 2 + + 19 + 20

r 1

sum 21

There are -?-(22 such sums, so 1.+ 2 + + 20 = 10-21.

The use of Pascal's triangle to verify that Sn = In(n + 1) in the

case of n . 6 is shown in the following d'iagram.

/
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1

1 3 3 1

1
--n(n + 1) for n
2

6 is

1 4 6 4 1 1

2

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

The use of Pascal's triangle to show that the formula is true for n

od0is straightforward. The grouping idea is illore difficult, but can

be carried'ou,t with an argument suCh as.the following: In r+ 2 + 1

+ n there are an odd number of terms when n is odd, but
(n - 1)

2

pairs of them have the sum n + 1.
t.

Lsum n + 11 1

sLim n + 1

The middle term will be 41 so the whole sum will be

n - 1 n + 1 (n - 1)(n + 1) n + 1
(n + 1) + +

2 2 2
.

(r2-4.71)((n - 1) + 1) (n 4'2 1)n -12,n(n + 1):

ACTIVITY 11 .

MODULAR ARITHMETIC I

MATERIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCEDURE:

This activity is concerned with .supplyirig the notation to e)cpress

formally the ideas developed in Activity 10.. The presentation of the



notation is followed by exercises in applying .the symbols., An item

that deserves special attention is the notion of "well-definod ness"

which appears in question 3, To a mathematician this iaa4ra1

concern; to the mathematically unsophisticated this7nOtion May seem

less natural and require'some careful development. Itlilight beusb-

.ful to relate it to "vagueness" ond to comment on'the diTiculties

children have with a.mague concept.

ANSWERS:

1. + [o.J4 [1]4 [2]4 [3]4 Ms [1']5 [2] [3] 5 [435

[01'4 [0] [1] [2] [3] Ms [0]. [1] [2] [3] [In-
\

[1] [1] [2] [3] [0] [1]5 [1] [2], [3] [4] [o]

[2]4 E2J [3] [0] [1] [2]5 [2] [3] [4] [o] [1]

[3].1
ioa] [o] [1] 121------E3.]5 [3] [4] [0] [1] [2]

[A]s [4] [0] [1) [2] [3]

2. a) yes, [014

b) yes, [114

c). ftl, C214 x [214 = [0]4 butPeither factor 1214.is [014.-

d) yes, [O]5; YeS [11.5; yes La15 + ba15 Ni requires either

[a]5 [0]5 or [b]5 [0]5 or both. This can be verlffed

[I] [2] [3] [4] [5]

[2] [4] [o] [2] [4]

[3] [o] C3] [o] [3]

.[4] [2] Co] [4] [2]

Cs] [4J [3] [2] [1]
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by examining a table constructed Tor, x

'in exercise 1.,

3. a) Possible answers are

[013 + [213 = [213 'ILI 4. [314 = [0]4

6 + 14 = 20 5 + 7 = 12

18 + 8 = 26 13 + 15 = 28

) Possible answers are

[113 x [213 = [213 [214.x [014 = [.0]4

4 x 8 = 32 . 6 x 4 = 24

10 x 11 = 110 10 x 8 = 80

PROJECT 6

CASTING OUT NINES

MATERIALS PREPARAIION:

1111/ None,

COMMENTS AND SUGGESTED PROCEDURE:
S.

on this system as

[]5 + [4e5 = Elk

2 + 14 = 16

7 + 19 = 26

x [415 = [4]

Cx 4 24

11 9 = 99

This Project deals with an interesting application of modular arith-

metic which has been in use for several centuries. It likely that

in the past few peOple using this technique tould explain its mathe=

matical basis, and that their inability to do so wa the result'of

never having investigated remainder classes and never having devel-

, oped notation to describe them. Casting out nines 4s,a good example

of an interesting and useful result in number theory which is acces-

sible to the layman.

ANSWERS:

1. 481

[4]

+ 653

+ [5]

+ 98 + 124

+ [8] + [7]

= 1356

= [6]

The sum is correct and casting out

nines does not show it incorrect.
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25 4- 36. 4-86 #'157

"[7] t [0]-+ [8] # [4]

37 x 255 # 9535

[1] x [3] # [4]

17 x41 = 697 .0

[8] x [5] = [4]

58 x 74 # 4382

[4],x [2] = [8]

,

2. 73 + 42 # 124

[1] + [8] = [7]

/

The sum is incorrect and casting out

nines shows.that it is, incorrect'.

'

The product is incorrect and casting

oat nines shows that it is incorrect.

The product.is correct and.easting

out nines does'not show that it is

incoriect.

The product is in5orrett, but casfing

out nines does not show that it is-

incorrect (i.e., tasting out nines

does not detect the error).

Any sum in which one digit is one too

large and another digit is one too

small will dQ .

Challenge Problem

Casting out; nines depends upon two, principles: (1) that if n is a

counting number and s(h) is the sum of its digits then.s(n) E n(mod'-

9) and (2) if a + b =-c and a x b = d, then,in any modulus (and in

particular in mod 9) a(mOd 9) + b(mod = c(mod 9) and a(mod 9) x

b(mod 9) = d(mod 9).

Principle (2) has been developed.in question 3 above, and. prin-

ciple (1) can be.Sustified as follows. In a has 'k digiits and

a = ad + al 10 + a2 102 k 1 Where d < a. < 9 fon+ + ak 110

i = 0,1,...,k - 1, then n = ad + a1(9 + 1) + a2(9 + 1) + ±

ak 1(9 + 1)
k - 1

=-(a0 + al + a2 + + an) +0N where N is some

number divisible by 9. Thus, n a (ad + al + + lk 1)(mod 9). '



ACTIVITY 12

MODULAR ARITHMETICTI:

' CONGRUENCES, EQUIVALENCE RELATIONS, AND APPLICATIONS

MATERIALS PREPARATION:

Norie

COMMENTS AND SUGGESTED PROCEDURE:

This activity contains the most sophisticated,mathematics of the

entire unit. Phrt A deals with tile nOtion and notation of an eqvi-

valence class. Part B deals with properties of equivalence classes .

in some generality. Part C contains probfeMs which 'can be solved

using modular arithmetic. Problems, 1 and 4 in Part C are fairly tiff-

ficult and may be used as challenge problems.

ANSWERS:

1, x c S, x E 0 (mod 2)) = (4, 6, 8, 10,, 12, 14)

(x: x c S, x E 1 (mod 3)) .7._1141117, 10; 13)

(x: x c S, x E 0 (mod 5)) = (5, 10)

(x: x c S, x E 1 (mod 4),) F (5, 9, 13)

(x: x c S, x E 2 (mod 6)) = (8, 14)

2. Sultable.examples are

9 = 3 (mod 6) = .9 E 3 (mod 3)

12 E 4 (mod 8) 12 E 4 (mod 2)

If plq'there)s an integer x such that px = q. If a E b(mod

\3

q) then ql(a -.b), and therefore pxl(a - b). It follows:that
1.

pl(a - b) and therefore a E b (mod p).

4. The reason this "ought to be true" is that congruence mod p

is an equivalence relation 'and equivalence relations are transi-

tive. .A proof of the assertion follows.

If a E b(mod p) and b E c(mod p), then pl(a - b) and pl(b - c).

If a number divides both of two numbers it divides their sum, so

Ol[(a J b) (b 0] or pl(a - c). Hence a E c(mod p)
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Consider a number n such that n E.,3(mod 6). Such a number

must satisfy"61(n - 3), so there is an integer b such that

n - 3 = 6k or equivalently n = 6k - 3. This shows that n

must be odd. Thus any number congruent to 3 mod 6 is odd, ,and '

, consequently 2x = 3(mod-6) is impossib1e.

6. The key to this problem is to work in mod 3. In. modi /.a0Y

counting numbee, m must be congruent to 0 oe 1 or 2. ,,If m E 0

!
mod 3 then m2 E 0 mod If m E 1(mod 3) then ,m2 E 1(mod'3)..

If m E 2(mod 3) then m2 E 1(mod 1)% r-In no case is. m2 E 2(mod

3). But'(3n - 1) E 2(mod 3), lierice (3n - 1) dannot be a perfect

square.

7. No. If 4(n2 + 1) is divisible by 11, then n2,+ 1 must be divis-

ible bY 11. Another way,of saying this is that n2 + f L,I)(mod

11), or n2 7:-10(mod W. We may cheek whether this is possible

by constructing the following table. '1'

h(mod 11) 0 1 2 3 4 5 6 7 8 9 10

n2(Mod, 11) 0 '-'1 4 9 5 3 3 5 -'9 4 o 1

The table shows tKat there is no n such that n2 j 10(mod 11).

8. See the answer given in Activit:9 10, question,4.

Part B

1. An equivalence

2. Not an equivalence; not reflexive; not symmetric

3. Not an equivalence; not symmetric

4. Not an equivalence; not reflexive;' not symmetric

5. Not an equivalence; not reflexive; not symmetric; not transittve

6. An equivalence; if one associates (e,b) with Oe fraction then

the ,equivalence is the ordinary equivalenCe of two frac-

tions.

7. An equtyalence
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Part C

1. 51'eggs. If n is the number of cartons of eggs originally nd

x is the number of batches of cookies then 12n + 3 - 5x = 1.

Si!ice 12n E 0(mod 12) we have 3 5x = 1(mod 12). Then

3. 5x + 1(mod 12) and consequently 5x 2(mod'12). Thus 5x

belongs to (14, 26,-38, 50, ...). The smallest possible valtie

of 5x is 5a so x = 10. Substituting this in the original equa-

tion we get 12n + 3 - 50 = 1 or 12n + 3 = 51. Thus there were

originally 51 eggs.

. In mod 5 Arithmetic 3.2 : 1(mod 5), 4.4 1(mod 5),

a) is 1,in, mod 5 arithmetic

1 1
-3- . .4- is -2- in mod 5 arithmetic

1
-2- : 3 is 4 in Mod 5 arithmetic

Yes. He meant that the inverse of 2 in mod 5 arithmetic

times the inverse of 2 is the inverse of 4 in mod 5 arith-

. njetia.- Since 3 is the i4WPerse of 2 and 4 is its own inverse

he claims that 33 E 4 in' mod 5 arithmetic; and he is right.

. x ,2(mod 5) implies that x z (2, 7, 12, 17, 22, 27,: 32, 37,

3x 1(mod 8) implies,that x must be ode'and conse-
.

quently we need to consider only'the odd numbers in the above,

set, i.e., (7, 17, 27, o..) :S,ince 3.7 = 21 :11 5(mod 8),

3.17 = 51 . 3(mod 8), and-u327 = 81 'JP 1(mod 8), 27 is the small-

est whole humber solution to the paIr of congruenCes.

4. The check Could have been for $10.21. To solve the problem, let

A be the number of cents in the check and B be the number of

dollars. The story tells us that 100A + B - 68 = 2008 + 2A,

from whieh we may deduce that B - 68 2A(mod 100). Now since

there was only one purchase and only' one'possible regrouping of

dollars to cents, one of the following must hold: either

2A = B - 68 (Since A > 0, we conclude B > 68 and since B is two

digits, AL,16. With, such A and 13, 100A + B - 68 = 2008 + 2A is

o
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impossible.); or 102A B -68. (Since B is a two-digit number,

this is impossible.); or 2A = 32. By trial and error One

has determihed that it is the last of these which yields a whole

numbee solution by substituting A ; 32 ,into_the Original

equation 100A + B 68 = 200B + 2A. *The details follow.

100(B 4.2 32) B 68 2008 + 2(B 32)
2

,50B + 1600 + B 68 = 200B + ± 32

1600 - 68 - 32 150B

1500-= 150B, B = 10

B + 32-.. 10 + _
A 21

2- 2

ACTIVITY 13

THE EUCLIDEAN ALGORITHM AgD OTHER SELECTED TOPICS

MATERIALS PREPARATION:

None

COMMkNTS ANO SUGGESTED PROCEDURE:

This final activlty in the writ concerns the Euclidean Algorithm (for

finding the GCF of two numbers) and the fact that given integers a

and b there exist integers al. and such that am + bn GCF(a,b).

The verbal argument on pages 405-106 justifying the algorithm should

be presented with discussion in class. Many students may lack the

mathematical experience and maturity to follow such an argument pre---

sented only' in print.

ANSWERS:

Part A

1. a) 2

b) 44

c) 4 1 98
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The, hint a reminder that for any counting numbers a and b

LCM(a,b) x GCF(a,b) = ab. Thus LCM(a,b)
GCFIlla,b)

The GCF

may be found by the following -steps.

2 r 200 13 r 18 11 r 2 .9 r 0

2618)5436 200 riglir 18FOIT 2 5-5-

5236 2600 198

200 18 T ,
Therefore, LCM =

5436)x 2618
7115724

2

3. a) This is just exact'ly the Euclideari,algorithm in a format'

which does not require rewriting the'remainder as the next

b) 3 3 i 3 2

2 )612o) 26) 98) 222
6 18 20 78 196

"6 2 6 ,20 26

3 1 1 2 3 6

4 )12) 16) 28) 72) 244) 1536
12 12 16 56 216 1464

0 4 12 16 28 72
,

Part 13

1. a) GCF = 3 (-3).9 + 1-30

b) GCF . 4 (-3).8 +. 1.28

c) GCF = 1 = (-11)-9 + 4.25

GCF = 6 = (-2).18, + 1..42

2. The GdF of two relatively prime numbers is 1.

3. a) Relatively prime 1 = (-9).9 + 4.20

b) GCF = 3 1

c) GCF = 2 1

d) Relatively Prime 1 = 6.6 + (-1)(35)
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. No, the relation As neither transitive nor reflexive. For.exam-

ple, 4 and 9 are relatively prime, and 9 and 8 are relatively

prime, but 4 and 8 are not relatively prime. Also the GCF of a

number-and itself is itself, so a, number cannot, be relatively

prtme to itself.

TEACHER TEASER, page 36

n - n = 0

n
2

- n =

is always divisible .by 1

- 1) is always divisible by 2 (one of two'consecu-

tive couhting numbers is even)

n
3

- n = (n -.1)(n)(n + 1) is always divistble by 3 (one of three

0

consecutive numbers is a multiple of

3)

n4 - n = (n - 1)(n)(n2 + n'+ 1) is not always divisible by 4 (if

n . 2, 2
4

- 2 = 14 which is not

divisible by 4)

n = (n - 1)(n)(n + 1) (n+ 1) fs always divisible by 5 (one

of the factors is always a

_ multiple of 5)

In general, if k is prime therink n is alwaYs divisible by k, no

matter what whole numbere n is. If ihe studeni tests the case -

n
6

n or especially if he uses a compUter to test aaveral more

cases, he will probably find this'pattern,

TEACHER TEASER, page 51

The only prime triple is 3, 5, 7. To prove this suppose p - 2, p;

p 2 are primes and p > 5. If p > 5 then p - 2 and -p are a pair

of twin primes, which are one less and one more respectively' than

some multiple of 6. Let p -_2 = 6n,- l'and p = 6n + 1. Then p + 2 =-

6n + 1 + 2 = 6n +-3 = 3(2n + 1), which thOwt that p + 2 is not prime

because jt has a factor of 3. So it is impossible to hive prime tri-

ple p 2, p,: p + 2 with p > 5.

of)



TEACHER TEASER, page 86

Let n be the number of the f'irst day of some week. Then the seven

days are numbered n, n + 1, n n + 3, n + 4, n + 5, n + 6.

Their sum ts 7n + 21 = 7)(n + 3). Another way of looking at this is

to number the days [(n + 3) - 3], [(n + [(n + 3) 1],

En 4- 3], [(n + 3) + 1], [(n + 3) + 2], [(n + 3) + 3] and to 'notice

thatthere are Seven days each of which'has an (n + 3) term and an-

other term which is the additive inverSe of that term for some other

day. The total is 7(n + 3).

TEACHER TEASER, page 96

Sally is correct; the ones digit of a square can never be an 8. The

ones digit of a square can be 0, 1, 4, 5, 6, or 9, but never 2, 3, 7,

or 8.
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